
XMIT Specification

alpha15 - 2014-09-05 Contents 1 (13)

XMIT Specification
alpha15 - 2014-09-05

XMIT defines lightweight logical sessions that are used
to carry application messages. XMIT defines a set of
basic patterns for communication modes and reliability
guarantees. XMIT is designed to meet the requirements of
automated trading in the financial markets.

Copyright ©, Pantor Engineering AB, All rights reserved

Contents

1 Alpha Version Document Notice. 2

2 Overview. 2
2.1 Supports Common Workflows. 2
2.2 Session Lifetime. 2
2.3 Application Independency. 2
2.4 Minimized Overhead. 2
2.5 Efficient Use of the Network. 2
2.6 Protocol Layering. 2
2.7 History. 3
2.8 References. 3
2.9 Blink Relationship. 3
2.10 Implementation Independency. 3

3 Session. 3
3.1 Identification. 3

3.1.1 Unique, Distributed Allocation. . . . 3
3.1.2 Rationale. 3
3.1.3 Lifetime. 3

3.2 Creation / Negotiation. 4
3.2.1 Negotiate. 4
3.2.2 Negotiation Response. 4
3.2.3 Negotiation Reject. 4

3.3 Establishment and Re-Establishment. 4
3.3.1 Establish. 4
3.3.2 Establishment Ack. 5
3.3.3 Establishment Reject. 5

3.4 Termination. 5
3.4.1 Terminate. 5

3.5 Finalization. 5
3.5.1 Finished Sending. 6
3.5.2 Finished Receiving. 6

4 Message Flows. 6

5 Recoverable Flows. 6
5.1 Sequence. 6
5.2 Sequencing. 7
5.3 Message Mode. 7

6 Idempotent Flows. 7
6.1 Definition of An Operation. 7

6.2 Client Requirements. 7
6.3 Server Requirements. 7
6.4 Algorithm Properties. 7
6.5 Applied. 7
6.6 Not Applied. 8
6.7 Concurrency. 8

6.7.1 Unreliable Transport. 8
6.7.2 Latency Hiding. 8

6.8 Server-Side State And Efficiency. 8

7 Unsequenced Flows. 8

8 Multiplexing Recoverable Flows. 8
8.1 Context. 9

9 Error Detection. 9
9.1 Silence Means Error. 9
9.2 Unsequenced Heartbeat. 9
9.3 Recoverable Flows. 9
9.4 Idempotent Flows. 9
9.5 Unsequenced Flows. 10

10 Resynchronization. 10
10.1 Retransmit Request. 10
10.2 Retransmission. 10
10.3 Request Constraints. 10
10.4 Resynchronization Pacing. 10
10.5 Concurrent Transmission. 11

10.5.1 Multiplexed Recovery. 11
10.5.2 Realtime Interleaving. 11

11 Messaging Patterns. 11
11.1 Point To Point. 11
11.2 One To Many. 11

11.2.1 Topic. 11

12 Protocol Layering. 12

13 Reserved Message Identifiers. 12
13.1 Blink Message Identifiers. 12
13.2 Session Layer Header. 12
13.3 OSI Session Layer. 13

Appendices

A Standardized Credentials Configurations. 13
A.1 Minimal Identification. 13

B Release Notes. 13
B.1 alpha15. 13

XMIT Specification

alpha15 - 2014-09-05 1. Alpha Version Document Notice 2 (13)

1 Alpha Version Document Notice

NOTE: The XMIT specification is not stable yet.

2 Overview

XMIT defines lightweight logical sessions. A session is used to carry
application messages. XMIT is responsible for using the selected
communications mechanism to deliver messages orderly from one
application to one or more other applications in the context of a
session.

XMIT is named after the abbreviation of transmit and is pronounced
X-MIT.

XMIT is designed to meet the requirements of automated trading
in the financial markets. These include the use of open protocols,
simple design, freedom from being tied to a particular messaging
library implementation, and eliminating unnecesssary overhead
that affects communications latency.

2.1 Supports Common Workflows

XMIT is designed to support basic communications patterns,
primarily targeting automated trading workflows.

XMIT defines two basic asynchronous communications patterns -
point to point and one to many. Applications can synthesize more
involved synchronous or asynchronous patterns from these two
basic patterns.

XMIT supports multiple delivery contracts.

• Recoverable - traditional reliable messaging in the form
of a bidirectional message queue.

• Idempotent Operations - where messaging is defined in
terms of operations to be carried out. XMIT ensures that
each operation is applied at most once. XMIT does not
queue. Instead, it lets the application decide to retry an
operation that is about to be delayed. The return flow,
comprising the server messages that the operations
result in, is recoverable.

• Application Defined - XMIT uses an unsequenced
transmission in both directions, leaving control to the
application.

XMIT can be used to communicate the same messages to multiple
receivers. When multicasting messages using UDP, data groups or
topics at the application level are sometimes more fine grained than
the grouping that is available at the network level. XMIT enables
flexible configuration of application topics onto network groups.
XMIT does so by decoupling topic definition at the application level
from multicast addressing at the networking level, allowing multiple
application topics to be multiplexed over a single network address.

2.2 Session Lifetime

Logical sessions are defined online, eliminating the complexity
involved in recycling static session definitions. The identifier of a
session is universally collision free, which eliminates the need to
manage sessions manually. It is sufficient to manage how sessions
are allowed to be authenticated and how an XMIT session is related

to the corresponding application level session. There are hooks for
applications to control the creation and authentication of sessions.

For stacks that do not require a separate encoding of the OSI
Session Layer implementation, like Blink, XMIT can be tunneled
over the presentation layer without any overhead. For other stacks,
XMIT specifies requirements on a concrete OSI Session Layer
encoding.

The session creation and establishment procedures can be
authenticated.

2.3 Application Independency

An application message does not need to have a session header
and does not need to implement or subclass a session layer entity.
This means that any message can be an application message and
that any message can be passed over XMIT non-intrusively.

2.4 Minimized Overhead

No control data is specified per application message. XMIT
functions by injecting control messages in the stream of application
messages. XMIT adds a minimal overhead to a conversation. It
is mostly silent during the transmission of an application message
flow.

2.5 Efficient Use of the Network

XMIT supports [UDP] and [TCP], as well as other communication
mechanisms. UDP is unreliable. TCP is reliable but not always
connected, which means that any queuing has to be done in parallel
with the one done inside a TCP implementation.

UDP is lightweight and reduces the complexity in a
high performance environment. UDP also provides a higher
transparency as it does not have algorithms that require opaque
queueing inside.

NOTE: XMIT supports passing a message over a datagram
transport only if the message fits in a single datagram.

TCP offers congestion and flow control, which make it a better
option for communications between data centers, unless bandwidth
is guaranteed.

XMIT also works with other messaging primitives, like ones based
on inter-process communications [IPC].

2.6 Protocol Layering

In terms of the OSI model [OSI], XMIT is an implementation of the
session layer.

While carrying out session layer functions (OSI Session Layer),
XMIT is working at its simplest when relying on a unified encoding
(OSI Presentation Layer), and is tunneled to appear at the same
level as application messages (OSI Application Layer).

This specification is made in terms of Blink [BLINK], but it is
straightforward to define support for other encodings. There is a
Blink schema that specifies the XMIT messages in [SCHEMA].

XMIT Specification

alpha15 - 2014-09-05 2. Overview 3 (13)

2.7 History

XMIT draws upon the design of the Soup, Mold, and UFO session
protocols defined by Island and later NASDAQ. XMIT provides a
combined feature set in a single general purpose protocol and adds
features such as the negotiation, in-band creation, of new sessions.

XMIT was designed and prototyped at Pantor Engineering in 2013.
At Pantor, it is used to network distributed systems and as the
session layer in internal and external high performance trading
and market data interfaces. XMIT is also used for custom-built
integration interfaces.

2.8 References

SCHEMA http://blinkprotocol.org/s/xmit.blink

BLINK http://blinkprotocol.org/spec/BlinkSpec-beta3.pdf

RFC4122 http://tools.ietf.org/html/rfc4122

TCP Transmission Control Protocol

UDP User Datagram Protocol

IPC Inter-Process Communication

IP MC IP Multicast

OSI ISO standard ISO/IEC 7498-1:1994

IDEMP Idempotence means that an operation that is
applied multiple times does not change the
outcome, the result, after the first time.

GITHUB https://github.com/pantor-engineering/xmit

2.9 Blink Relationship

In this specification, XMIT messages are defined in terms of the
Blink schema. Blink meets XMIT requirements on message framing
and identification natively, without the use of a session layer
message header. XMIT is not part of the Blink protocol or vice versa.
The role of XMIT in a protocol stack is outlined in Section 12 (page
12) .

2.10 Implementation Independency

XMIT is straight forward to implement and is not tied to a reference
implementation or platform. Pantor Engineering AB provides open
source implementation of XMIT that is available at [GITHUB].

3 Session

A new session can be created at any time, using an XMIT in band
negotiation protocol. The session identifier is suggested by the
client and negotiated with the server. The use of the session is
separate from the act of creating the session.

The negotiation of a session involves the application in validating
the credentials of the negotiating client.

A session can be established only after it has been negotiated.
The session can be terminated and re-established without any
additional negotiation. The server application has the chance to
perform authentication during session establishment, in addition to
any authentication carried out during the negotiation of the session.

3.1 Identification

Uuid = @blink:type="UUID" fixed (16)

A session has no predefined duration. A session is abandoned
and replaced with a new session where some other session level
protocols would instead have a mechanism for reusing the existing
session definition. The key to the XMIT model is its use of an
easy-to-allocate surrogate session identifier that has no semantic
meaning. In other words, it uses an identifier that is not defined and
used by humans.

3.1.1 Unique, Distributed Allocation

A session is defined by its universally unique identifier (UUID). A
session identifier is a 128 bit entity that is supposed to never be
reused anywhere and to be collision free. The UUID is allocated by
the client before it attempts to negotiate the session. The allocation
scheme is to generate a random UUID according to UUID Version
4 [RFC4122].

3.1.2 Rationale

The benefit of using an UUID instead of a sequence value is that it
is effortless to allocate in a distributed system. It is also simple and
efficient to hash and therefore easy to lookup at the endpoints. The
downside is a larger size overhead. The identifier however does
not appear in the stream once a session has been established and
bound to an underlying transport that identifies the session. When
sessions are being multiplexed onto the same transport session,
the identifier appears whenever the sender switches into a new
session, at minimum once per datagram when using UDP.

NOTE: XMIT has an optional optimization of the identifier size
that can be used when multiplexing sessions.

3.1.3 Lifetime

The lifetime of the session is until both flow directions have ended
(finalized). For instance, in a financial trading session that has a
daily schedule, a session would typically be allocated once per
day. If there is an unrecoverable problem with the session, it would
however be abandoned and replaced with a newly negotiated
session.

http://blinkprotocol.org/s/xmit.blink
http://blinkprotocol.org/spec/BlinkSpec-beta3.pdf
http://tools.ietf.org/html/rfc4122
https://github.com/pantor-engineering/xmit

XMIT Specification

alpha15 - 2014-09-05 3. Session 4 (13)

3.2 Creation / Negotiation

A client creates a session identifier and initiates the negotiation
of that session by sending Negotiate. XMIT leaves authentication
credentials to be defined by the application via a generic object
typed field.

Figure 3-1 Session Negotiation

3.2.1 Negotiate

The client selects a Timestamp that it will not reuse in another
Negotiate message, and allocates a random UUID for the
SessionId. It defines the type of flow it will be using in ClientFlow.
The client optionally selects Credentials as defined by the rules
of engagement that are in place. Standard credentials models are
defined in Appendix A (page 13) .

FlowType =
 Recoverable | Unsequenced | Idempotent

Negotiate/0x10000 ->
 nanotime Timestamp,
 Uuid SessionId,
 FlowType ClientFlow,
 object Credentials?

3.2.2 Negotiation Response

The server responds with a NegotiationResponse or a
NegotiationReject. The session is referenced via its SessionId. The
specific negotiation request is referenced via RequestTimestamp
that matches the Timestamp field in the Negotiate request.

If the server accepts the session, it will declare the flow type it will
be using in ServerFlow.

The server will accept the session again if the negotiation request
is repeated.

NegotiationResponse/0x10001 ->
 nanotime RequestTimestamp, # ref Negotiate
 Uuid SessionId,
 FlowType ServerFlow

3.2.3 Negotiation Reject

If the server rejects the session, it will specify a Reason in free text
form.

NegotiationRejectCode = Credentials | Unspecified |
 FlowTypeNotSupported

NegotiationReject/0x10002 ->
 nanotime RequestTimestamp, # ref Negotiate
 Uuid SessionId,
 NegotiationRejectCode Code,
 string Reason?

3.3 Establishment and Re-Establishment

A client attempts to establish a session, which is the same as saying
that it binds a logical session to an underlying transport, by sending
an Establish message. The same message exchange is used the
first time the session is established and any later time it is re-
established.

The server responds with an EstablishmentAck or
EstablishmentReject message.

As described in Section 8 (page 8) , multiple logical XMIT
sessions can be multiplexed over a transport by repeating the
exchange of establishment messages but using a different session
identifier.

Figure 3-2 Session Establishment

3.3.1 Establish

The client selects a Timestamp that it will not reuse in another
Establish message, and selects the SessionId for the logical
session it wants to establish. It optionally selects Credentials as
defined by the rules of engagement that are in place. For simplistic
credentials implementations, it does not provide any value to
specify Credentials in the establishment phase in addition to the
negotiation phase. The field is left as a hook for more involved
credentials mechanisms. In KeepaliveInterval, the client informs the
server the longest it will remain silent for before sending a keep
alive message.

If the client is producing a recoverable flow, it will declare
the sequence number of the next message it will produce in
NextSeqNo. This sequence number is unrelated to what, if any,

XMIT Specification

alpha15 - 2014-09-05 3. Session 5 (13)

messages have previously been sent to the server. It allows the
server to immediately initiate message replay if there are messages
that it has not received. For an idempotent flow, the field is not set
as messages are not recoverable by the server.

Establish/0x10010 ->
 nanotime Timestamp,
 Uuid SessionId,
 DeltaMillisecs KeepaliveInterval,
 u64 NextSeqNo?,
 object Credentials?

DeltaMillisecs = u32

3.3.2 Establishment Ack

The server accepts the session by responding with an
EstablishmentAck message that references the session SessionId.
RequestTimestamp references the Timestamp of the Establish
message being responded to. In KeepaliveInterval, the server
informs the client the longest it will remain silent for before sending
a keep alive message.

If the server is producing a recoverable flow, it will declare
the sequence number of the next message it will produce in
NextSeqNo. It is used for the same purpose as the same field in
the establish message.

If the client has made multiple attempts to establish the session,
RequestTimestamp allows the client to determine which attempt the
server is responding to.

Unless the session identifier and the request timestamp in the
acknowledgment match a request, the acknowledgment must be
ignored and an internal alert may be generated.

EstablishmentAck/0x10011 ->
 Uuid SessionId, # Robustness, is redundant
 nanotime RequestTimestamp, # ref Establish
 DeltaMillisecs KeepaliveInterval,
 u64 NextSeqNo?

3.3.3 Establishment Reject

If the server rejects the attempt to establish the session, it will
specify a Reason in free text form.

EstablishmentRejectCode = Unnegotiated
 | AlreadyEstablished | SessionBlocked |
 KeepaliveInterval | Credentials | Unspecified

EstablishmentReject/0x10012 ->
 Uuid SessionId, # Robustness, is redundant
 nanotime RequestTimestamp, # ref Establish
 EstablishRejectCode Code,
 string Reason?

3.4 Termination

When a session has been terminated, it is no longer established,
but can be re-established again.

To terminate a session is to break the binding that was created
during session establishment, the binding from the XMIT session
to the underlying transport.

An established session becomes terminated, stops being
established, for one of the following reasons:

• If one of the peers sends or receives a Terminate
message;

• or, if the transport level session is disconnected;

• or, as a result of the keep alive mechanism defined in
Section 9.2 (page 9) is expiring its timer.

If the termination is not conveyed to the other peer, both peers
will eventually consider the session to be terminated for one of
the reasons listed. A server will not accept the session to be re-
established if the session is still in the established state.

Session termination does not imply logical flow finalization, as
defined in Section 3.5 (page 5) .

Session termination should ideally complete on both sides without
having to wait for a timer to expire, with the exception that some
communications or application problems can only be detected
using a timer. A peer must therefore respond to Terminate with a
Terminate response, unless one such message has already been
sent after the session was established.

3.4.1 Terminate

TerminationCode = Finished | UnspecifiedError |
 ReRequestOutOfBounds | ReRequestInProgress

Terminate/0x10015 ->
 Uuid SessionId, # Robustness, is redundant
 TerminationCode Code,
 string Reason?

3.5 Finalization

Any flow is finalized orderly to ensure both sides know what the
other side knows. This procedure is independent of, but is one of the
causes of, the termination of the transport binding using Terminate.

The producer of a flow signals that the flow has logically reached
its end by sending FinishedSending.

A producer of a finalized flow where the transport has not yet been
terminated uses FinishedSending as the keepalive message.

In some scenarios, a peer cannot determine when the session has
ended safely unless there is an procedure for orderly finalization.
The receiving side therefore responds to FinishedSending with a
FinishedReceiving message after having received all messages.
When a peer has received and sent a FinishedReceiving, it must
terminate with a Terminate message. If there is message loss
during the termination protocol exchange, the session keep alive
mechanism will tear down the session. The session will be in an
unfinalized state and it must be re-established before a new attempt
can be made to terminate it orderly.

XMIT Specification

alpha15 - 2014-09-05 3. Session 6 (13)

3.5.1 Finished Sending

FinishedSending/0x10025 ->
 Uuid SessionId, # Robustness, is redundant
 u64 LastSeqNo?

3.5.2 Finished Receiving

FinishedReceiving/0x10026 ->
 Uuid SessionId # Robustness, is redundant

4 Message Flows

XMIT defines a direction to carry a flow of messages. The type of
flow is independent of the type of the other direction in a point to
point session. There are three flow types, recoverable, idempotent,
and unsequenced.

The client defines the flow type it is going to use in the
Negotiate message and the server defines its flow type in the
NegotiationResponse messsage.

When an idempotent flow is configured, XMIT ensures that when a
client requests the server to carry out an operation, the operation
will neither be forgotten nor applied multiple times. This mode is
used by clients that need to control whether to retry or cancel an
operation that failed to reach the server on a previous attempt.

If an idempotent flow is negotiated by the client, the server will
always use a recoverable flow towards the client.

One-to-many sessions can be recoverable or unsequenced. The
behavior is declared using the Topic message. An example
application of the unsequenced flow is to provide information
snapshots without allowing historic values to be retrieved.

5 Recoverable Flows

The purpose of a recoverable flow is to allow the streaming
of a recoverable, serially ordered, sequence of messages. The
message sequence is fully defined at the XMIT level, in the
session layer, using sequence numbers. Sequence numbers
appear in the stream only when required for the endpoints to
agree on the sequencing. The sequence number is passed in
an EstablishmentAck, Sequence, Context, PackedContext, or a
Retransmission message.

A recoverable flow starts at the sequence number one.

A recoverable flow is idempotent [IDEMP] because it has exactly-
once semantics.

At-least-once semantics is provisioned by the retransmission of
messages based on the detection of an out of order flow or the
expiration of a timer set when the previous message arrived. There
is a guarantee that a message is delivered including a verification
to the sender for a session that terminates at the flow level.

At-most-once semantics is guaranteed by the sequencing of
messages as this allows the receiver-side XMIT logic to order the
incoming flow and filter duplicated messages.

Any message passed after Sequence is implicitly numbered, where
the first message after Sequence has the sequence number
NextSeqNo. Session level messages are not part of the recoverable
flow.

5.1 Sequence

Sequence/0x01 ->
 u64 NextSeqNo

XMIT Specification

alpha15 - 2014-09-05 5. Recoverable Flows 7 (13)

5.2 Sequencing

In a non-multiplexed flow that runs over a reliable transport, the
sequence number of an application message is calculated implicitly
from the one specified explictly during session establishment.

In a non-multiplexed flow that runs over an unreliable transport, the
sequence must be established at the start of each datagram using
a Sequence message.

5.3 Message Mode

The Sequence, Context, PackedContext, EstblishmentAck, and
Retransmission messages are sequence forming. They define the
implicit sequence numbering for subsequent messages.

Any non-XMIT message, as defined in Section 13 (page 12) ,
has the next implicit sequence number and is dispatched to the
application layer. An XMIT message does not have a sequence
number.

6 Idempotent Flows

When a client uses the idempotent flow type, each application
message becomes a request to the server to perfom an operation.
XMIT ensures that an operation has the property that it will neither
be forgotten nor applied multiple times. XMIT provides the option for
the client application to prefer canceling an undelivered, potentially
stale, operation to retrying it.

To guarantee idempotence, a unique identifier has to be allocated to
each operation to be carried out. XMIT uses a sequence number for
the identifier. The response flow must identify which operations that
have been carried out. When the client negotiates a session with
the idempotent flow type, the server must respond that its return
flow is recoverable.

6.1 Definition of An Operation

Each individual application message is an idempotent operation
and is identified using a sequence number that is unique within
the context of the session. The sequence number is implicit
and is defined using a Sequence message. The first message
after Sequence has the sequence number NextSeqNo. The same
lifetime rules apply for the implicit sequence number in the
idempotent flow, as for the implicit sequence number in the
recoverable flow.

The current version of XMIT does not provide a mechanism
for composing an operation that logically comprises multiple
application messages. To achieve atomicity over multiple
application messages, the application layer has to package them
into a single application message. The client application can also
achieve atomicity over multiple operations by either using a reliable
transport or using a datagram transport and sending operations
that belong together in a single datagram. XMIT requires but does
not control that the server application carries out all operations
delivered to it.

6.2 Client Requirements

The client-side XMIT implementation is responsible for reattempting
an operation that is not acknowledged by the server (at least once
semantics). It is also reponsible for sending keep alive messages.
The requirements are described in more detail in Section 9.4 (page
9) .

6.3 Server Requirements

The server-side XMIT implementation is responsible for discarding
any operation that has a sequence number lower or equal to the
operation that was carried out last (at most once semantics). The
combination of at-most-once and at-least-once semantics provide
exactly-once semantics, making any operation tagged with a unique
identifier to be idempotent.

The server accepts an operation with a higher sequence number,
even if there is a sequence gap. The server must notify the client
that operations in the sequence gap will be discarded, by sending
a NotApplied message. In other words, the server will apply a more
recent operation that arrives before a previous operation that is
delayed. When the previous operation finally arrives, it will not be
applied.

If the server receives a Sequence message with a higher
NextSeqNo than expected, the server has information about
potential message loss. If the client sent the Sequence message as
a heartbeat, no application message follows. The server must delay
discarding messages in the potential gap until an actual application
message arrives that makes the gap definitive. This means that
the Sequence message does not function as a heartbeat message
for recovery purposes. The reason for this behavior is explained in
Section 9.4 (page 9) .

6.4 Algorithm Properties

This algorithm is designed to be simple and highly efficient. It
provides clear semantics to the client in how it can issue operations
concurrently and how to proceed in a failure scenario.

A consequence of the algorithm is that a lost operation will not
hold up other processing if the client decides to issue operations
concurrently. It is the responsibility of the client to hold back issuing
any operation that has a dependency on a previous operation, or to
transport the operations in a way that they are guaranteed to either
arrive in order, or to not arrive at all. It can do so by either using a
reliable transport, or by sending them in the same datagram using
an unreliable transport. Consequences of the algorithm in terms
of concurrency are described in more detail in Section 6.7 (page
8) .

6.5 Applied

The server confirms that a range of operations has been applied by
returning an Applied message.

If the server receives an operation that it has already applied, there
is no need to regenerate an applied message due to a lost signal
scenario. The return flow is recoverable, message by message.

XMIT Specification

alpha15 - 2014-09-05 6. Idempotent Flows 8 (13)

NOTE: The server-side application layer may identify to
the client-side application layer which operations that have
been applied, making the Applied message redundant. XMIT
requires Applied messages to be sent explicitly, unless the
parties use an application layer that overrides this requirement.
The application layer specification should state explicitly in
which scenarios an application message takes over the role of
the Applied message, and when not. XMIT does not include
a mechanism for specifying in band that the use of Applied
has been selectively replaced with the use of a corresponding
application message, as such a mechanism would introduce
significant complexity while not necessarily being generic.

Applied/0x10201 ->
 u64 FromSeqNo,
 u32 Count

6.6 Not Applied

The server specifies that a range of operations has not been applied
by returning a NotApplied message.

NotApplied/0x10202 ->
 u64 FromSeqNo,
 u32 Count

6.7 Concurrency

The client can issue multiple operations without waiting for previous
operations to complete. This means that network transfer latency
does not limit the client for as long as all messages arrive in order. If
an operation arrives out of order and is discarded by the server, the
server will send a NotApplied notification without a delay, allowing
the client to reissue the operation quickly using a new sequence
number.

The client ensures that all operations are applied in order by
sending operations in controlled batches.

The client can ensure that an operation is applied in order while
issuing multiple operations concurrently, despite the simplistic
semantics guaranteed by the server. The base premise is that
the client has to hold back sending new operations until previous
operations have been applied. This limitation is lifted if a reliable
transport is used. Also with a reliable transport, the client needs
to able to reattempt operations orderly, as the transport may be
disconnected and later reconnected.

6.7.1 Unreliable Transport

The limitation is worked around if an unreliable transport is used, by
relying on datagram boundaries and the property that a datagram
is either delivered completely or not at all. As all or none operations
in a datagram will be delivered at the server, the client only needs
to consider holding back subsequent datagrams until all operations
in the previous datagram have been acknowledged. In other words,
the client remains in full control while being able to have multiple
operations in flight to the server, yielding a concurrency equal to the
number of operations that fit into one datagram.

6.7.2 Latency Hiding

Total ordering with concurrency can be achieved without being
limited by network or server latency, at the cost of increased
complexity.

As only one datagram can be in flight, a long distance network will
limit the effective concurrency available to a client that is waiting
for acknowledgments before being able to issue the next round of
operations.

A straight forward solution to avoid being limited by delays in this
scenario is to use multiple independent XMIT sessions. XMIT is
defined in a way that it is cheap to use multiple sessions, even
allowing ones to be created dynamically.

6.8 Server-Side State And Efficiency

By requiring operation identifiers to be allocated in a strictly
monotonic sequence, the server side can be optimized.

The server does not need to store the full set of identifiers for
previously applied operations. It does not even need to store the
set of identifiers that were not applied (note: it would have, if
the idempotent flow was to support the use of an unsequenced,
unrecoverable flow out of the server).

The flow outbound from the server is required to use the
recoverable XMIT flow mode. This allows the server to rely on its
outbound flow to be recoverable and forget state for any historic
operations.

The server generates a NotApplied message for each expected
operation that it did not see by the time it applies the next operation.
The client will see the result of all operations including lost ones by
processing the recoverable server message flow.

If and when the server finally receives the lost or out of order
operation, the operation will be ignored and no new response will
be generated for it.

7 Unsequenced Flows

The purpose of an unsequenced flow is to leave the control of
messaging to the application.

8 Multiplexing Recoverable Flows

Sessions in a recoverable flow direction can be multiplexed
over a connection. When multiplexing is active, the Context
message is used instead of Sequence, to include information
about what session that is being recoverable. PackedContext has
the same semantics as Context and can optionally be used to
reduce message size overhead. The Retransmission message also
functions as a context message. Only these three messages sets
which session that is active. Other messages that specify a session
identifier do not imply a change of which multiplexed session that
is active.

The sequence must be established at the start of each datagram or
every time the flow switches to the next logical session.

XMIT Specification

alpha15 - 2014-09-05 8. Multiplexing Recoverable Flows 9 (13)

8.1 Context

Context/0x10050 ->
 Uuid SessionId,
 u64 NextSeqNo?

PackedContext can be used when the next sequence number is
inside a 32 bit range. The prefix is selected by using the first
eight bytes of the identifier. The sender must ensure that the prefix
uniquely identifies the session. The size of PackedContext is half
the size of Context.

PackedContext/0x10051 ->
 binary (8) SessionIdPrefix,
 u32 NextSeqNo?

9 Error Detection

9.1 Silence Means Error

Both sides must send messages regularly to enable the other
side to determine that the application is intentionally silent, so that
complete silence clearly indicates that there is either a loss of
communications or that the other side malfunctions.

9.2 Unsequenced Heartbeat

UnsequencedHeartbeat/0x10020

Each peer declares how often it is going to send keep alive
messages during the establishment phase. The server can decide
to reject the establishment attempt based on the interval selected
by the client. It is up to each peer to determine the relationship
between the announced keep alive interval and the length of the
silence it accepts before terminating the session.

9.3 Recoverable Flows

In a recoverable flow, the Sequence message functions as a
keep alive message in addition to its sequencing role. In case the
transport is multiplexed, its Context sibling is used instead.

9.4 Idempotent Flows

In the scenarios below, it is stated that the client may reattempt an
operation. In each of these cases, the client-side application has
the opportunity to instead instruct the XMIT implementation to not
reattempt the operation. In that case, the server will later go forward
with the next future operation and acknowledge the discarding of
one or more operations using a NotApplied message.

In addition to using a timer for sending messages to keep
the connection alive, the client-side XMIT implementation is
responsible for regularly reattempting unacknowledged operations.

An operation is determined by the client to remain in transit or
remain in progress until it receives either an Applied or a NotApplied
notification. If a message has been lost, and no new operations
are being generated, there will be silence. The use of NotApplied
messages means that some scenarios will be resolved without
waiting for a timer to expire. For the remaining scenarios, a
timer based retry mechanism is required. As stated before, the
Sequence message may indicate to the server that there is a
potential problem. If the server would decide to act upon that
information and discard any potentially lost operations, the client
would have the option to retry these operations using a new
sequence number. To avoid having multiple ways of achieving
similar semantics, this option is closed by this specification, and
the simplest mechanism remains. That mechanism is to use timer
based Sequence messages for indicating that the client is active,
and timer based reattempts of operations.

The Sequence message is used as a keep alive message and must
be sent by the client unless the connection would otherwise be
silent, in accordance with the negotiated keep alive interval. The
UnsequencedHeartbeat message is not allowed to be used. It could

XMIT Specification

alpha15 - 2014-09-05 9. Error Detection 10 (13)

serve the same role, but the Sequence message has the benefit
of being more explicit and therefore more useful for any logging
purposes.

9.5 Unsequenced Flows

For unsequenced flows, the session level does not use the keep
alive mechanism to trigger recovery, but the application level is
free to rely on sesion level messages as a trigger. The use of
keep alive is therefore required also for unsequenced flows. In
an unsequenced flow, an UnsequencedHeartbeat functions as a
keep alive message. In the multiplexing case, such a heartbeat
message implies a keep alive for all established sessions with an
unsequenced flow and not only the active session.

10 Resynchronization

NOTE: Resynchronization is replay based in this version of
XMIT. Any snapshot style resynchronization is left to the
application to define. A future version of XMIT may include
messages that allow application snapshot synchronization to
be matched to sequence numbers in the XMIT flow.

A peer consuming a flow can request recoverable messages
to be retransmitted by sending RetransmitRequest. The peer
producing the flow responds with a Retransmission message before
retransmitting messages, or with a Terminate message if the
request violates the protocol.

Retransmitted messages are sequenced using the Retransmission
message instead of using one of the Sequence or Context
messages. In a datagram oriented transport, Retransmission
is passed in every single retransmission datagram. In addition
to reseting the implicit sequence number, the Retransmission
message signals that the request has been or is being processed
and also informs the consumer whether it needs to issue a follow
up RetransmitRequest message.

10.1 Retransmit Request

RetransmitRequest/0x10021 ->
 Uuid SessionId,
 nanotime Timestamp,
 u64 FromSeqNo,
 u32 Count

10.2 Retransmission

Retransmission/0x10022 ->
 Uuid SessionId,
 u64 NextSeqNo,
 nanotime RequestTimestamp,
 u32 Count

10.3 Request Constraints

XMIT conveys sufficient information for a flow consumer to
know what messages are available to be re-requested. If a re-
request despite this specifies a range that is fully or partially
out of bounds, the server will terminate the session with the
ReRequestOutOfBounds code. As the session is re-established,
the consumer will get a fresh reminder of what messages that are
available and will get a new chance to avoid the error logic that
made it send an uninformed RetransmitRequest in the first place.
The server is free to take appropriate action, like generating an
internal alert or blocking the session, if the problem reoccurs after
the session is re-established.

10.4 Resynchronization Pacing

In a datagram transport without builtin flow control, like UDP,
resending many messages in a short time may result in packet loss.
RetransmitRequest and Retransmission messages must therefore
be exchanged in a way that the correspondence is rate paced.
Unless the underlying transport provides guaranteed delivery, the

XMIT Specification

alpha15 - 2014-09-05 10. Resynchronization 11 (13)

sender must limit how many messages are retransmitted per
request to what can be sent in a single datagram.

To successfully resynchronize with the sender, the receiver needs
to take part in the rate pacing algorithm. It does so by issuing a new
RetransmitRequest to get the next set of messages, as a reaction to
a Retransmission response that does not close the message gap. A
receiver must not send a new RetransmitRequest until the previous
request has completed or until a timer has expired, indicating packet
loss.

The sender will terminate the session with the
ReRequestInProgress code if it sees a premature retransmit
request. The reason for not allowing multiple retransmit requests
to be in progress is that it would potentially disrupt the rate pacing
algorithm.

Using a UDP datagram transport, the sender must bound each
retransmission round to what can be sent in a single datagram. In
a high latency network, this requirement severely limits the ability
to take advantage of available bandwidth. To support high speed
recovery in a high delay and variable bandwidth environment, it
is recommended that the recovery is carried out over a transport
with built in congestion management, like TCP. Alternatively, the
sender implementation may include a congestion management
policy that adapts the response size dynamically and accepts
multiple requests to be in progress.

10.5 Concurrent Transmission

10.5.1 Multiplexed Recovery

A producer is free to multiplex the realtime message flow for one
session with retransmission for another session. If multiple session
flows are being retransmitted concurrently and these sessions are
related at the application level, it is up to the consumer to control
how the retransmission should be interleaved. The consumer may
want to interleave its input in a logical input order to avoid having
to excessively buffer the input for some session that is getting
ahead of another. The consumer can do that by controlling the
retransmission in as fine grained way as it desires. There is
some complexity as only the application layer can determine the
logical relationship between the multiplexed and translate that into
sequence numbers for its XMIT session layer implementation. The
alternative is not to control

10.5.2 Realtime Interleaving

A producer may also send the realtime flow concurrently with
messages that have been re-requested on the same session. The
receiver may elect not to queue the realtime data if the gap of
messages to recover is large. It can later request these voluntarily
dropped messages to be resent. There is a potential race condition
in the resynchronization procedure as recovery nears completion
and the receiver becomes ready to only process the realtime flow.
The receiver must therefore start to queue incoming realtime data
for processing, at the latest when it has had to issue a retransmit
request for data that it dropped voluntarily earlier in the current
recovery phase. The receiver must also queue incoming realtime
data after the initial recovery phase has completed, in conjunction
with session (re)establishment.

11 Messaging Patterns

XMIT provides two communications models primitively,
asynchronous point to point and asynchronous one to many
communications. Other common patterns, synchronous or
asynchronous, can be synthesized from these two base patterns,
at the application level.

11.1 Point To Point

A point to point session has a client and a server. The client
initiates the establishment of a session against the server. After the
session has been established, the relationship between the parties
are peers, in the sense that there is no inherent client and server
relationship beyond the session establishment.

The point to point session is full duplex, i.e., messages can be sent
in both directions independently.

11.2 One To Many

An XMIT session can be producer defined instead of being
negotiated by a client. The producer declares the session using a
Topic message.

The Topic message binds a topic or logical channel to a session
and also declares that session.

In the Classification field, the producer specifies or classifies the
content of the flow. A topic can for instance be fully detailed market
data updates for one financial instrument. The field has the type
object and is defined by the application. In the financial instrument
example, the object would identify the instrument and other aspects
that distinguishes this topic, such as the detail level of the market
data updates it conveys.

11.2.1 Topic

Topic/0x10003 ->
 Uuid SessionId,
 FlowType Flow,
 object Classification

Recovery of a producer flow is initiated by establishing the session
using the topic's SessionId against a point to point recovery service
and then using the ordinary retransmission request mechanism.
The producer can opt to perform the retransmission over the
multicast flow or in a directed reply.

As a receiver may not have seen the initial Topic message for a
session, it has to be resent with regularity or sent unsolicited in a
response to RetransmissionRequest for the session.

XMIT Specification

alpha15 - 2014-09-05 12. Protocol Layering 12 (13)

12 Protocol Layering

Blink based protocol stacks are self sufficient in determining
message framing and type identifiers. However, a session layer
message framing can be used also with Blink.

Figure 12-1 Protocol Stack

XMIT messaging can be delegated to use the same presentation
layer that the application layer uses. In this mode, the XMIT
implementation on each side is responsible for dispatching
messages to the relevant layer. This mode is ideal in stacks
using a unified encoding across layers that perform integrated
layer processing. It allows the combined stream of session
and application messages to be transformed into an alternative
encoding without any loss in fidelity. This is is the preferred mode
in a Blink based stack.

NOTE: With Blink, the delegation of messaging to the
presentation layer is not performed using traditional tunneling.
As XMIT is optimized for performance, it instead relies on
letting session layer and application layer messages share the
namespace of message type identifiers in the presentation
layer. In Blink, this is done by reserving identifiers for session
messages and letting XMIT perform message dispatching.

Figure 12-2 Blink Stack

The use of an optional framing protocol encapsulates the
presentation layer, allowing the encoding for session messages and
application messages to be separated.

Figure 12-3 Switched Stack

The framing protocol comprises a session layer header on
each message. XMIT does not define a concrete header. The
requirements on the header are defined in Section 13.2 (page
12) .

13 Reserved Message Identifiers

Unless a framing protocol is used to separate messages, XMIT
shares the presentation layer with application messages. The XMIT
messages therefore need to allocate type identifiers in the same
namespace. The allocation is specific to each session layer.

13.1 Blink Message Identifiers

When XMIT is used with Blink, the message type id 1 and id 2 and
the types in the range 10000 hex to 10210 hex, inclusively, are defined
to be XMIT messages.

13.2 Session Layer Header

The optional XMIT presentation header is a concrete OSI
layer 5 entity that wraps the presentation layer. Encodings,
i.e., presentation layer implementations, are assigned a protocol
number. Each message is prefixed with a presentation header
that specifies the size of the message, including the presentation
header. The protocol type determines which encoding that is used,
allowing the encoding to be set individually for each message.

NOTE: This document does not specify a concrete header or
a registry for protocol types.

Figure 13-1 XMIT Session Layer Header

XMIT Specification

alpha15 - 2014-09-05 13. Reserved Message Identifiers 13 (13)

Figure 13-2 Framing Blink Native

Figure 13-3 Framing Blink Compact

13.3 OSI Session Layer

Use of framing enables different encodings to be used in parallel.
This means that XMIT control messages can be separated from
application messsages, effectively turning XMIT into a traditional
OSI Session Layer.

Figure 13-4 Single Encoding Example

Figure 13-5 Multi Encoding Example

A Standardized Credentials Configurations

A.1 Minimal Identification

A minimal, polite use of the Credentials object is to identify the
client creating the session using a string. Secure authentication
is implicitly left to a separate layer, like using a secure VPN. The
content of the string is implementation specific.

StringIdentification should not be used as a composite to pass a
tuple of sub identifiers. Instead, the tuple should be modeled fully
at the schema level, i.e., in a separate message.

It is not necessary to pass the identifer in the establishment phase,
as it has already been passed during the negotiation phase.

StringIdentification/0x10170 ->
 string Identity

B Release Notes

The release notes start at version alpha15.

B.1 alpha15

Zhu Li provided feedback and several of the suggestions introduced
in this release.

Don Mendelson came up with the improved naming of the
Recoverable flow type.

• The flow type Sequenced has been renamed to
Recoverable.

• Distinguish between flow termination and session
transport binding termination better by calling the former
flow finalization.

• Added a NextSeqNo to Established for better symmetry
with the response message and making client message
recovery more responsive, otherwise being delayed until
the next new message is produced by the client.

• Define FinishedSending to be used for all flow types,
making LastSeqNo optional for the unsequenced flow.

• Define FinishedSending to be the keepalive message for
a finalized flow.

