
XMIT Design Notes

alpha9 - 2013-08-27 Contents 1 (4)

XMIT Design Notes
alpha9 - 2013-08-27

This document complements the XMIT specification by
explaining design goals and potential applicability of XMIT.

Copyright ©, Pantor Engineering AB, All rights reserved

Contents

1 References. 1

2 Introduction. 1

3 Transfer Encoding. 2

4 Session Identifier Allocation. 2

5 Implementation Independency. 2

6 Tacit Properties. 2

7 Transport Protocols. 2

8 Performance Notes. 3
8.1 Efficient Session Mapping. 3
8.2 Efficient Topic Filtering. 3

9 Other Session Layers. 3
9.1 FIX. 3
9.2 NASDAQ Soup and UFO. 3
9.3 NASDAQ Mold. 3

10 Applications. 3
10.1 FIX/XMIT. 3
10.2 High Performance Electronic Trading. 3
10.3 Multicast Market Data. 4
10.4 Subscribed Market Data. 4

1 References

XMIT http://blinkprotocol.org/spec/XmitSpec-alpha9.pdf

GITHUB https://github.com/pantor-engineering/xmit

BLINK http://blinkprotocol.org

RFC4122 http://tools.ietf.org/html/rfc4122

RFC4689 http://tools.ietf.org/html/rfc4689

RFC5218 http://tools.ietf.org/html/rfc5218

RFC5405 http://tools.ietf.org/html/rfc5405

HOURGLASShttp://tools.ietf.org/html/draft-tschofenig-
hourglass-00

TCP Transmission Control Protocol

UDP User Datagram Protocol

IPC Inter-Process Communication

RPC Remote Procedure Call

QUIC http://en.wikipedia.org/wiki/QUIC

2 Introduction

The purpose of this document is to give some context to XMIT
design decisions and explain some tacit properties of XMIT. To a
large extent, XMIT builds upon existing best practices.

XMIT was designed to extract and generalize upon the best
characteristics of existing session layer protocols that support
electronic trading in the capital markets.

Among key requirements in this space is to support asynchronous
peer-to-peer and one-to-many communications in the data center
and in wide area networks. XMIT leaves to the user to synthesize
any other more involved communications pattern from these two
basic patterns. Synchronous request and response or [RPC] is one
example of a pattern that is easy to build from the XMIT peer to
peer primitive.

XMIT was designed to make it easy for applications to take
advantage of UDP and its better than TCP realtime characteristics.
An XMIT implementation should be able to present a unified
interface to the application, regardless of which transport protocol
that is used.

XMIT is a protocol and not a programming interface with a protocol
inside.

Another design goal has been to avoid weak aspects of existing
protocols. Specifically, the FIX session layer is a widely used
standard that has a significant performance overhead. The FIX
session is improperly layered, confusing application message
flow with the session control flow, and has unfortunate lifetime
semantics. A simple error in carrying out a standard operational
procedure may silently void the guarantee that an operation is only
carried out once. XMIT and the FIX session layer are significantly
different.

XMIT is meant to be more generic than the purpose built protocols
that its design draws upon. This would allow XMIT to be more
widely applicable, at a minimal increase in complexity or processing
overhead.

Some of the existing protocols that XMIT draws upon, or relates to,
are described in Section 9 (page 3) .

http://blinkprotocol.org/spec/XmitSpec-alpha9.pdf
https://github.com/pantor-engineering/xmit
http://blinkprotocol.org
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc4689
http://tools.ietf.org/html/rfc5218
http://tools.ietf.org/html/rfc5405
http://tools.ietf.org/html/draft-tschofenig-hourglass-00
http://tools.ietf.org/html/draft-tschofenig-hourglass-00
http://en.wikipedia.org/wiki/QUIC

XMIT Design Notes

alpha9 - 2013-08-27 2. Introduction 2 (4)

Sample application patterns using XMIT can be found in Section 10
(page 3) .

3 Transfer Encoding

XMIT explicitly does not specify a transfer encoding. The
data center requirement includes in-process and in-server
communications and high performance networking. In an
environment sometimes constrained by processing power instead
of bandwidth, the optimal transfer encoding may be different
than in other scenarios. This applies to XMIT as well as other
protocol layers. To get some background on transfer encoding
independence that is application transparent, please see the design
of [BLINK].

XMIT shares a design philosophy with Blink, in that the same
message protocol should be used across layers where possible.
The session and the application layers should be independent of
a particular transfer encoding. By first liberating the layers in the
stack, it becomes possible to select a particular encoding across the
layers for a given message exchange. This enables vertical access
through the message layers, i.e., integrated layer processing.

4 Session Identifier Allocation

XMIT relies on UUID generation to create unique identifiers in
a distributed system, without requiring any communication in the
allocation of identifiers. It may take a leap of faith to accept that
this allocation system is safe. If you feel uncomfortable with this
method, please bear in mind that this is a practice established in
other settings long before XMIT was created.

5 Implementation Independency

XMIT is simple to implement and is not tied to a reference
implementation or platform. It was first implemented in node.js,
using a foreign function interface towards a Blink C++
implementation. The second and third XMIT implementations were
written in C++ and Java, respectively. The Java version is open
sourced and can be found at [GITHUB]. It is based on the Pantor
Engineering open source Blink implementation that is available at
the same location.

Some messaging technologies are defined in terms of a
common programming interface that provides easy to use access
to message patterns, with bindings in multiple programming
languages. There is sometimes a stronger emphasis on the
programming interface than on the underlying session level protocol
being used. The specification of XMIT is strictly protocol oriented.

6 Tacit Properties

The purpose of this chapter is to highlight or reiterate properties of
XMIT, some of which are otherwise tacit.

• XMIT performs optimally over an unreliable datagram
transport (UDP), if there is sufficient bandwidth. If the
network is sometimes congested, the optimal transport
is to use TCP that is designed to handle such scenarios.

• XMIT enables the flow in each direction to be either
sequenced or unsequenced, independently of the flow
type used in the other direction.

• XMIT allows sessions to be multiplexed over a single
transport session or in a datagram. The latter enables
fine-grained topics of data to be multicast using coarse-
grained multicast group addressing.

• XMIT does not provide flow control or rate pacing.

• This version of XMIT does not include acknowledgment
of receipt; such acknowledgment could potentially allow
a producer to prune data it has created.

• XMIT provides transparency into and control over the
behavior in congestion and packet loss scenarios, where
a reliable but opaque transport would introduce latency
and unconditional retransmisson.

7 Transport Protocols

A key aspect of the design is to take advantage of the nuances in
communicating over UDP or TCP in the best way possible.

UDP provides better realtime and latency characteristics. UDP
provides control to the user where the use of TCP would hide and
translate network problems into unconditional retransmission and
resulting delays. A UDP based stack is simpler and therefore easier
to implement in a new, different way for better performance.

On the server side, UDP may significantly reduce the per-
session state footprint compared to TCP. A processor is typically
constrained by its caches, so a reduced footprint allows more
sessions to be handled per processor core.

XMIT and TCP partially overlaps but XMIT does not provide
some more complex TCP features that are often desirable. Using
TCP with XMIT adds congestion control and flow control while
the reliability and ordering provided by TCP overlaps with similar
functionality in XMIT.

Traditionally, TCP has been used as the safe or default choice,
despite UDP having been a potentially better match. XMIT is meant
to make it easier to use UDP exactly where it makes sense to.

TCP is more capable but also more complex, opaque, and difficult
to control. For a realtime application, TCP provides little value over
UDP in the data center, or along a network path that has predictable
bandwidth characteristics, TCP does provide the congestion control
mechanism required to optimize the utility of a network path,
where a naive UDP implemention might under utilize the available
bandwidth for fear of packet loss.

It could be attractive to create a hybrid of TCP and UDP, like
combining the congestion control of TCP with the application option
to intelligently drop data that would get stale and irrelevant if

XMIT Design Notes

alpha9 - 2013-08-27 7. Transport Protocols 3 (4)

queueing kicks in. There would be little value in trying to reinvent
the algorithms used by TCP in XMIT, unless it could be done
at a low complexity penalty. If anything, XMIT should leverage
emerging alternatives to TCP. See [QUIC] for a recent example on
an intermediary network protocol that leverages existing UDP (and
TCP obviously) centric network infrastructure to provide TCP like
features.

8 Performance Notes

8.1 Efficient Session Mapping

The UDP or TCP addressing tuple identifies one established XMIT
session unless multiplexing is being used. This tuple can be
bound to a file descriptor in the sockets programming model. An
implementation of XMIT can therefore use a low cost lookup from
the file descriptor to the only XMIT session for the file descriptor.

8.2 Efficient Topic Filtering

The receiver can perform topic filtering on the XMIT level, without
involving the application. This means that filtering can be offloaded
with ease, for instance to an FPGA-based device.

9 Other Session Layers

9.1 FIX

Model wise, the FIX session layer most closely resembles peer to
peer XMIT with the use of the sequenced mode in both directions.
FIX and XMIT differs significantly in that the application layer is
decoupled from the session layer in XMIT.

In FIX, all messages from both layers use the same sequencing.
The FIX model is seemingly simple, but results in unwanted
behavior. A producer of a FIX application flow cannot determine
its own sequence. Instead, the sequence will depend on the way
it is transmitted to the counterparty. For instance, if the session is
logged off and logged on again, the relogon message exchange
will allocate an outgoing sequence number. This means that no
application message will have a predetermined sequence number,
but one that depends on events at the session level.

If the exact same application flow is shared among multiple parties
using a FIX session each, the producer cannot use a shared
message sequence. If one of the parties log off and on, the sessions
carrying the same data will have a different sequence numbering.
This property of the FIX session layer limits the scalability of an
market data application. It is also more difficult to replicate the exact
sequence in a separate copy of the producer, to create a highly
available service.

The tight coupling of layers in FIX means that there is a need for a
gap fill mechanism to weed out session messages during recovery.
XMIT does not have this need.

To deal with the problems in the FIX session layer, it is common to
use FIX application sequencing and turn off the sequencing at the
FIX session level. These fields are defined at the FIX application
level but there is no cleaned up FIX session layer that integrates
the new mechanism. At the time of writing this text, there is no wide

adoption of a reformed FIX session and application layer that would
allow an implementor of a general platform to avoid avoid dealing
with the shortcomings of the original FIX session layer.

9.2 NASDAQ Soup and UFO

Soup is similar to the XMIT peer to peer mode, with an unsequenced
flow going from the client to the venue, and using a sequenced flow
in the other direction. The UDP based UFO protocol maps to XMIT
in the same way as Soup. XMIT unifies the models used by Soup
and UFO.

9.3 NASDAQ Mold

Mold UDP is similar to the XMIT one to many mode. XMIT
adds the option to create topics, logical sessions. The model for
recovering messages in Mold resembles the peer to peer XMIT
recovery model. In Mold UDP, there is an implicit convention
that a datagram of payload is sent in each retransmission round,
automatically imposing rate pacing by making the client send a
new rerequest message for each incoming datagram. In XMIT,
the rate pacing has been made more explicit to support multiple
datagrams to be in transit at a time, and to better function
over TCP that has no datagram boundaries. In XMIT, there
is a RetransmitRequestResponse message that instructs the
counterparty that it will need to issue a new resend request.

10 Applications

10.1 FIX/XMIT

To layer the FIX application messages on to XMIT, XMIT would
be used in a bidirected sequenced mode. XMIT enables FIX to be
transported over UDP in addition to TCP. XMIT introduces session
layer decoupling.

A challenge with the lack of layering in the FIX stack is that it makes
it more difficult to migrate off the existing FIX session layer to an
alternate session protocol.

10.2 High Performance Electronic Trading

Order and quote routing messaging matches the use of the
unsequenced mode, as proven by the popularity of OUCH/Soup.
It makes good sense to blend the application and session layer,
not by coupling them like in FIX, but by moving responsibilites
to the application layer. To make an operation on an order (or a
quote) idempotent, a unqiue application level key is coupled to each
operation.

The unsequenced mode does not provide automatic transmission.
This is a feature and not a limitation as the application benefits from
controlling the behavior when a message would need to be resent.
An order that is not processed immediately is likely to be stale by
the time it can be reprocessed.

XMIT Design Notes

alpha9 - 2013-08-27 10. Applications 4 (4)

10.3 Multicast Market Data

One important consideration in multicasting market data is to weigh
the different filter preferences among clients against the cost to
produce a fine grained selection of logical channels.

By defining fewer logical channels with more content per channel,
messages that has been generated at an instant across topics
can be combined into fewer datagrams, thereby reducing network
header overhead. Also the cost to setup and maintain IP Multicast
groups is held back by having fewer of them.

By using coarse grouping, network bandwidth will obviously be
wasted on its way to clients and also add filtering processing
overhead. If topic addressing is made in application layer terms, the
input filtering has to be applied at the application level. It may be
costly processing wise for the client to carry out the filtering at the
application level, after having first decoded and passed all of the
data through the stack.

XMIT addresses the application level filter problem by allowing
clients to perform filtering already in the session layer, without
involving the application.

The use of one session for each topic or logical channel, in
combination with the use of multiplexing, allows XMIT to decouple
topic definition at the application level from multicast addressing at
the networking level. A large set of topics can be multiplexed over
a smaller set of multicast groups as there is one session per topic
and the producer is free to define the granularity of a topic.

10.4 Subscribed Market Data

An option to multicasting market data is to perform filtering at the
head end, and to allow clients to subscribe to a subset of the data
that is available to them. XMIT/TCP matches the traditional method
of using TCP to transport subscribed market data and performing
programmed multicast in software or using specialized hardware
appliances. A potential benefit of using XMIT/UDP is that advanced
data producers may be better able to control end to end rate pacing
with the more transparent UDP stack. Using XMIT/UDP may also
allow a producer to create a programmed multicast mechanism
where the UDP stack allows data copying to be made in a more
lean way across sessions, than is possible with the more complex
TCP stack.

