
FIX/Blink Specification

beta1 - 2013-06-14 Contents 1 (5)

FIX/Blink Specification
beta1 - 2013-06-14

This document specifies how to encode FIX, as is, on Blink
in an interoperable way. The specification leverages the
Blink message schema exchange protocol to support ad hoc
message extensions.

Copyright ©, Pantor Engineering AB, All rights reserved

Contents

1 Overview. 1

2 Schema Impedance Discussion. 1

3 Schema. 1
3.1 Namespace. 1
3.2 Message Base. 2
3.3 Message. 2
3.4 Field. 2
3.5 Component Block. 2
3.6 Repeating Group. 2
3.7 Enumeration. 2

3.7.1 Numeric. 2
3.7.2 Single Character. 2
3.7.3 String. 2

3.8 Excluded Fields. 3
3.8.1 BeginString. 3
3.8.2 BodyLength. 3
3.8.3 MsgType. 3
3.8.4 Repeating Group Length Fields. . . 3

3.9 Type Mapping. 3
3.10 Custom Tags. 3
3.11 Message Type Identifiers. 3
3.12 Annotations. 3

Appendices

A Examples. 4

B References. 5

1 Overview

This document outlines how FIX can be layered on the Blink
protocol in an interoperable way, without making any modifications
to the definition of FIX messages or the FIX session layer. Encoding
FIX, as is, on Blink yields compactness and performance benefits
over traditional text based tag/value encoding.

A potential refresh of the FIX application layer targeting further
efficiency benefits is outside the scope of this document.

2 Schema Impedance Discussion

FIX is structured into relatively few message types where each type
can represent a number of scenarios by mixing together different
sets of fields per scenario. This structure goes hand in hand with
a tagged representation.

In the Blink encoding, absent optional fields occupy one byte each.
Trailing absent optional fields can be left out, causing no encoding
overhead, but it may be difficult to order fields in an optimal way.
Blink therefore incurs an overhead in a structure having a large
number of optional fields.

The philosophy that led to Blink, and for which its simple design is
optimized, is to define one message type per major use scenario.
From this follows that there are relatively few optional fields in each
message definition. The design philosophy for supporting flexible
and emergent use cases is to define new message types in the
same or a new Blink message schema, whereas the philosophy of
FIX has been to add new optional fields to existing broad message
types when applicable. This gap precludes what would otherwise
seem to be a good idea: to make an automatic one-to-one mapping
of the FIX repository onto a corresponding Blink message schema.

Instead, the FIX model of having a large amount of optional fields
always available needs to be mapped onto a model where unused
fields are left out.

How this mapping is performed is outside the scope of this
document. Typically, specifications of FIX rules of engagement can
be used as the source for the mapping into a definition in Blink
message schema format. Each venue, service bureau, sell-side,
or other entity that provides a FIX service has a formal or informal
specification of their rules of engagement, and that can form the
basis for the message schema to be defined in that particular
setting.

It should be possible to specify this subsetting in a data format that
allows tools to automatically generate the resulting sub schemas in
Blink format from FIX repository schema files.

3 Schema

Most of the samples below are taken from the CME iLink rules of
engagement.

3.1 Namespace

The namespace for the schema is the FIX version being defined.
A rules of engagement specification based on FIX 4.2 has the
namespace:

FIX/Blink Specification

beta1 - 2013-06-14 3. Schema 2 (5)

namespace Fix42

The namespace for FIXT 1.1 is FixT11.

3.2 Message Base

Fields from the standard header are placed in a group called
Message:

Message ->
 bool PossDupFlag, ...

3.3 Message

A message is named to match the original FIX name. Every
message inherits from Message to include header fields:

ExecutionReport : Message ->
 bool AggressorIndicator?, ...

3.4 Field

A field is named to match the original FIX name:

bool AggressorIndicator?

A field in Blink can be mandatory or optional just as in FIX. However,
when constructing the Blink schema for a particular set of rules
of engagement, a field that is marked as optional in the original
specification may be mapped to a mandatory field if it is always
present in practice.

3.5 Component Block

FIX component blocks are groups of fields that can be referenced
by a component name from within a message definition.

A component block is mapped to a static subgroup type in Blink.

3.6 Repeating Group

In the FIX data model a repeating group lacks a real field name. For
the purpose of this mapping, a field name is created by removing
the 'No' prefix of the corresponding length field: the field name of
'NoPartyIDs' becomes 'PartyIDs'.

NOTE: The exception to this rule is the 'LinesOfText' sequence
in the News and Email message types, whose field name will
be identical to the repeating group name.

A repeating group is mapped to a sequence type where the item
type is a group compatible with the original structure. The content
of the original repeating group depends on the FIX version being
mapped. It is either

• a component block reference - in this case the item
type simply becomes a reference to the group that
corresponds to the component block;

• or a set of inline fields - a matching group is created by
concatenating the name of the group, component or
enclosing repeating group where the repeating group
appears with the mapped field name.

The length field itself is not mapped since the sequence type in Blink
has an intrinsic length value.

The content of the sequence is placed in a group:

PartiesPartyIDs ->
 string PartyID?,
 PartyIDSource PartyIDSource?,
 PartyRole PartyRole?,
 PtysSubGrpPartySubIDs [] PartySubIDs?

PartiesPartyIDs [] PartyIDs?, ...

3.7 Enumeration

An enumeration in FIX is mapped to an enumeration in Blink unless
the actual used set of valid values is open ended. If it is open ended,
then mapping of the underlying type is used instead.

NOTE: Rules of engagement may constrain an otherwise
open ended enumeration so that it becomes finite and can be
mapped to a Blink enumeration.

An enumeration based on strings is by default not mapped to
an enumeration in Blink to minimize the need for lookup tables
in translating implementations. However, rules of engagement
may specify that string enumerations are mapped to native Blink
enumerations too.

FIX enumerations can be categorized into three groups: numeric,
single character, and string. The following sections describe the
mappings in the three different cases.

3.7.1 Numeric

A numeric enumeration is mapped directly to a Blink enumeration
where each symbol has the same value as in the original:

BusinessRejectReason = Other/0 | UnknownId/1
 | UnknownSecurity/2 | UnsupportedMessage/3

3.7.2 Single Character

A single character enumeration maps to a Blink enumeration where
each symbol has the corresponding character code as the value:

CxlRejResponseTo = OrderCancelRequest/49
 | OrderCancelReplaceRequest/50

3.7.3 String

By default a string enumeration maps to a plain string field in Blink:

string BenchmarkCurveName?

FIX/Blink Specification

beta1 - 2013-06-14 3. Schema 3 (5)

The rules of engagement may specify that also a string based
enumeration is mapped to a native Blink enumeration and must
then specify how the FIX values map to corresponding Blink enum
symbols.

3.8 Excluded Fields

The BeginString, BodyLength, MsgType and Checksum fields are
left out as they are artefacts of the tag/value encoding and have a
different representation or no meaning at all in the Blink encoding.

3.8.1 BeginString

The begin string follows implicitly from the mapped group type.

3.8.2 BodyLength

Is not applicable when a message is encoded over Blink.

3.8.3 MsgType

The msg type follows implicitly from the mapped group type.

3.8.4 Repeating Group Length Fields

The repeating group length fields are eliminated as sequences are
native in Blink and include the sequence size.

3.9 Type Mapping

This is the general default mapping from the FIX base type into
Blink:

• Boolean - bool

• int - i32

• String - string

• char - u8

• float - decimal

• XML data - string(text/xml)

The following list overrides the above default mapping for some type
classes, to extend the value range:

• All Seqnum - u64

The following list overrides the above general mapping for some
derived types, to avoid unnecessary use of String:

• UTCTimestamp - millitime

• LocalMktDate - date

• UTCDateOnly - date

• UTCTimeOnly - timeOfDayMilli

3.10 Custom Tags

The Blink message extension mechanism is used to add dynamic
content to messages. A receiver is able to skip new content.

A sender defining content on the fly, for instance by adding a custom
tag, is required to define the new content using Blink Schema
Exchange.

A receiver that processes the Blink Schema Exchange messages
will be able to process any subsequent content, including fields that
have not previously been defined.

In order for implementations to be interoperable, a convention on
how the extension mechanism is applied must be established. This
document specifies that custom tags are placed in one or more
groups and that the naming of these groups has no meaning. The
implication of the presence of these groups is that their content
belong in the original message as custom tags.

3.11 Message Type Identifiers

The Blink encoding requires a numerical identifier for each message
type. The rules of engagement must specify the actual identifiers
to be used. The Blink schema syntax natively provides two ways
of specifying type identifiers, inline or out-of-line. Identifiers can be
specified as integers or as a hex numbers.

Inline type identifiers are specified after a slash following the
message name in the schema:

ExecutionReport/0x38 -> ...
NewOrderSingle/0x44 -> ...

Out-of-line type identifiers are specified as incremental annotations
which allow them to appear in locations separate from the message
definitions:

Fix42:ExecutionReport <- 0x38
Fix42:NewOrderSingle <- 0x44

3.12 Annotations

Blink schemas can be annotated with auxiliary information useful to
translating implementations and for human consumption. The Blink
schema format supports both inline and out-of-line annotations,
called incremental annotations.

It is recommended, but not required, that messages and fields
are annotated with their corresponding identifiers in the tag/value
encoding.

If fields are annotated inline with tag numbers, then they should be
specified after a slash following the field name:

string Text/58

If a type definition is used, then the tag number kan be specified
after a slash there:

Text/58 = string

If messages are annotated inline with the corresponding MsgType
value it should be placed in an annotation named fix:msgType:

FIX/Blink Specification

beta1 - 2013-06-14 3. Schema 4 (5)

@fix:msgType="A"
Logon -> ...

Incremental annotations allow annotations to be specified in a
location separate from the schema components they apply to. The
location could be later in the same schema file, but it could also be
in a separate schema file altogether:

Fix42:Logon <- @fix:msgType="A"
Fix42:Logout.Text <- 58

A Examples

The following example shows how a NewOrderSingle, based on
the CME iLink rules of engagement, can be represented in a Blink
schema.

namespace Fix42

@fix:msgType="D"
NewOrderSingle/0x44 : Message ->
 bool ManualOrderIndicator/1028,
 string ClOrdID/11,
 string Account/1,
 HandlInst HandlInst/21,
 string Symbol/55,
 string SecurityDesc/107,
 Side Side/54,
 OrdType OrdType/40,
 CustomerOrFirm CustomerOrFirm/204,
 CtiCode CtiCode/9702,
 decimal OrderQty/38,
 millitime TransactTime/60,
 CustOrderHandlingInst CustOrderHandlingInst/1031?,
 decimal Price/44?,
 TimeInForce TimeInForce/59?,
 string SecurityType/167?,
 NewOrderSingleAllocs [] Allocs/78?,
 date ExpireDate/432?,
 OpenClose OpenClose/77?,
 string CorrelationClOrdID/9717?,
 string GiveUpFirm/9707?,
 string CmtaGiveupCD/9708?,
 string OmnibusAccount/9701?,
 decimal MinQty/110?,
 decimal StopPx/99?,
 decimal MaxShow/210?

NewOrderSingleAllocs ->
 string AllocAccount/79

Message ->
 string SenderCompID/49,
 string TargetCompID/56,
 string SenderSubID/50,
 string TargetSubID/57,
 u64 MsgSeqNum/34,
 millitime SendingTime/52,
 u64 LastMsgSeqNumProcessed/369,
 string SenderLocationID/142?,
 millitime OrigSendingTime/122?,
 bool PossDupFlag/43?,
 bool PossResend/97?

TimeInForce =
 Day/48 | GoodTillCancel/49 | AtTheOpening/50 |
 ImmediateOrCancel/51 | FillOrKill/52 |
 GoodTillCrossing/53 | GoodTillDate/54

Side =
 Buy/49 | Sell/50 | BuyMinus/51 | SellPlus/52 |
 SellShort/53 | SellShortExempt/54 |
 Undisclosed/55 | Cross/56 | CrossShort/57

HandlInst =
 AutoExecOrderPrivateNoBrokerIntervention/49 |
 AutoExecOrderPublicBrokerInterventionOk/50 |
 ManualOrderBestExecution/51

OpenClose =
 Close/67 | Open/79

CtiCode =
 OwnAccount/49 | ClearingMemberHouseAccount/50 |
 OtherFloorBrokerTraderAccount/51 |
 OtherNonFloorAccount/52

FIX/Blink Specification

beta1 - 2013-06-14 Appendix A - Examples 5 (5)

OrdType =
 Market/49 | Limit/50 | Stop/51 | StopLimit/52 |
 MarketOnClose/53 | WithOrWithout/54 |
 LimitOrBetter/55 | LimitWithOrWithout/56 |
 OnBasis/57 | OnClose/65 | LimitOnClose/66 |
 ForexMarket/67 | PreviouslyQuoted/68 |
 PreviouslyIndicated/69 | ForexLimit/70 |
 ForexSwap/71 | ForexPreviouslyQuoted/72 |
 Funari/73 | Pegged/80

CustomerOrFirm =
 Customer/0 | Firm/1

CustOrderHandlingInst =
 PhoneSimple/65 | PhoneComplex/66 |
 FcmProvidedScreen/67 | OtherProvidedScreen/68 |
 ClientProvidedPlatformControlledByFcm/69 |
 ClientProvidedPlatformDirectToExchange/70 |
 FcmApiOrFix/71 | AlgoEngine/72 |
 PriceAtExecution/74 | DeskElectronic/87 |
 DeskPit/88 | ClientElectronic/89 | ClientPit/90

B References

BLINK http://blinkprotocol.org/spec/BlinkSpec-beta4.pdf

EXCH http://blinkprotocol.org/spec/
BlinkSchemaExchangeSpec-beta4.pdf

http://blinkprotocol.org/spec/BlinkSpec-beta4.pdf
http://blinkprotocol.org/spec/BlinkSchemaExchangeSpec-beta4.pdf
http://blinkprotocol.org/spec/BlinkSchemaExchangeSpec-beta4.pdf

