bllnk Blink Message XML Format Specification

Overview

The core Blink specification [BLINK] defines a schema language for
specifying the structure of data messages. It also defines a binary
format for messages defined by such schema.

Blink Message XML Format This specification provides a complementary format where

Speciﬁcation messages are encoded in XML. The encoding of data values is
based on the corresponding encoding specified in the Blink Tag
beta4 - 2013-06-05 Format Specification [TAG] as noted in the sections below.
This document specifies a method for encoding messages In the XML format:

structured by a Blink schema into an XML format.

« Each message or dynamic group is mapped to an

Copyright ©, Pantor Engineering AB, All rights reserved element with the same name as the source.

* Within a group, each field is mapped to an element with
the same name as the field.

Contents e Each primitive field value is represented as text, much
in the same way as in the Blink Tag format [TAG].
1 OVEIVIEW. + .+ vttt et e et e e e i e e 1 * Sequences are represented by a sequence of XML
elements, one for each item.
2 Basic Mapping. ... 1
2.1 Wrapper Element. 1 The following shows what the first example in the core Blink
22 NaMESPACES. .+« v v eeeeee e 1 specification would look like in the XML format:
2.3 Message 2 Assuming the schema:
24 Field. 2
25 Primitive Data Types. 2 e < s Eresig
2.6 String. . . oo 2
2.1 Binary and Fixed. 2 a Hello message carrying the greeting "Hello World" would be
2.8 SequeNCe. 2 encoded as
2.9 Static Group.o 3
2.10 Dynamic Group. 3 <Hello><Greeting>Hello World</Greeting></Hello>
3 Message Extensions. 3
4 WhItespace. 3 Basic Mapping
5 Annotation Attributes. 3 The following sections specifies how to represent Blink messages
in an XML format.
Appendices
A References. 4 Wrapper Element

Since an XML document can only have a single root element, the
XML representation of a stream of Blink messages will always be
enclosed in a single wrapper element. The name of the wrapper
element is not significant. However, this specification will always
call the wrapper element root:

<root>
<Hello><Greeting>Hello</Greeting></Hello>
<Hello><Greeting>Hello Again</Greeting></Hello>
</root>

Namespaces

Blink namespaces are mapped to XML namespaces. The URI of
the XML namespace is the name of the Blink namespace. The
prefix of an XML namespace is not significant in general, but this
specification uses the Blink name here too for clarity. This is also
the recommended method.

beta4 - 2013-06-05 Contents 1 (4)

blink

Blink Message XML Format Specification

Assuming two Blink namespace names Foo and Bar, then the
corresponding XML namespace declarations would typically be
placed on the wrapper element like this:

<root xmlns:Foo="Foo" xmlns:Bar="Bar"> ... </root>

Message

Top-level messages and internal dynamic groups are represented
as XML elements with the same name as the corresponding group.
If the group is defined in a namespace, then the corresponding XML
namespace will be used for the name.

Assuming a schema:

namespace Draw
Rect -> ...

then a Draw:Rect message would be represented as

<root xmlns:Draw="Draw">
<Draw:Rect> ... </Draw:Rect>
</root>

NOTE: Throughout the rest of the document, the wrapper
element and any XML namespace declarations will be left out
for brevity.

Field

Each field of a group is represented by an XML element with the
same name as the field. The element name of a field is always in
the null XML namespace. The order of the field elements is not
significant.

An optional field that has no value is simply left out.

Assuming a schema:

namespace Draw
Rect -> u32 Width, u32 Height, string Text?

then an instance could look like

<Draw:Rect>
<Width>10</Width>
<Height>20</Height>

</Draw:Rect>

or, including the optional Text field:

<Draw:Rect>
<Text>Square</Text>
<Width>17</Width>
<Height>17</Height>

</Draw:Rect>

Primitive Data Types

Any data type that is not a string, binary, fixed, sequence or group
is represented as character data in the XML document. The data
is formatted in the same way as defined in the Blink Tag Format
Specification [TAG].

String

A string is represented as character data. The special XML
characters < and & must be escaped. If a string type has a max size
property, then the string must not be longer that the specified value
when represented as a [UTF-8] byte sequence.

The following example illustrates the different escaping rules
between the Tag and XML formats. A message in Tag format:

@Exec|Command=grep Blink < /dev/random \| wc
would be represented like this in XML:

<Exec>
<Command>grep Blink < /dev/random | wc</Command>
</Exec>

Binary and Fixed

If the byte sequence of a binary or fixed value is a valid UTF-8
sequence, then it can be encoded as a string. Otherwise, a
hexadecimal list must be used. A hex list is represented by a
sequence of hex digits possibly separated by whitespace. The
corresponding byte sequence value is obtained by removing any
whitespace and translating each pair of hex digits into a byte. It is
an error if the number of hex digits is not a multiple of two.

If an element contains a hex list, it must also have an attribute
binary = "yes" to differentiate it from a normal string.

If a binary type has a max size property, then the byte sequence
that results from a hex list must not be longer that the specified
value. For a fixed type, the byte sequence must be exactly as long
as specified in the size property.

Assuming a schema:

inetAddr = fixed (4)
Packet -> inetAddr Host,

then a host address can be represented like this:

<Packet><Host binary="yes">3e 6d 3c ea</Host> ...

Sequence

A sequence is represented as a sequence of XML elements, one
for each item. Unless it is a sequence of dynamic groups, the name
of the item element is not significant. The item elements are placed
as children of the field element.

Assuming a schema:

betad - 2013-06-05

2. Basic Mapping 2 (4)

blink

Blink Message XML Format Specification

Sample -> u32 Values []
then a message could look like this:

<Sample>
<Values> <e>l</e> <e>2</e> <e>3</e> </Values>
</Sample>

Static Group

A static group value is represented by its fields. The field elements
are placed as child elements of the field or sequence item element.

Assuming a schema:

Point -> u32 X, u32Y
Line -> Point From, Point To
Path -> Point Points []

then a message could look like this:

<Line>
<From> <X>0</X> <Y>0</Y> </From>
<To> <X>10</X> <Y>10</Y> </To>
</Line>

In sequences of static groups, the fields are put in each item
element:

<Path>
<Points>
<Point> <X>0</X> <Y>0</Y> </Point>
<Point> <X>10</X> <Y>10</Y> </Point>
<Point> <X>17</X> <Y>10</Y> </Point>
</Points>
</Path>

The item element name in the example above was selected to be
the same as the group type, Point. Even if this is considered good
practice, any name could have been used for the item elements.

A Dynamic Group

A dynamic group is represented in the same way as a top level
message: by an XML element with the same name and namespace
as the group.

If the dynamic group appears as the value of a field, then the
element is placed as a child element of the field element.

Assuming a schema:

Shape

Rect : Shape -> u32 Width, u32 Height
Circle : Shape -> u32 Radius

Frame : Shape -> Shape* Content

Canvas -> Shape* [] Shapes
then a Frame is represented like this:

<Frame>
<Content>

<Rect><Width>10</Width><Height>20</Height></Rect>
</Content>
</Frame>

When a dynamic group appears as the value of a sequence item,
then the group element itself is used as the item element:

<Canvas>
<Shapes>
<Rect><Width>10</Width><Height>20</Height></Rect>
<Circle><Radius>10</Radius></Circle>
</Shapes>
</Canvas>

In sequences of dynamic groups, the name of the item element is
significant since it identifies the dynamic type of the value of the
item.

Message Extensions

Extension content of messages or internal dynamic groups is
represented in the XML format by putting it in a special extension
element. The name of the element is extension and it should be in
an XML namespace with the URI http://blinkprotocol.org/
ns/blink

Assuming a schema:

Mail -> string Subject, string Body
Trace -> string Hop

and an extended message:

@Mail|Subject=Hello|Body=How are you?|
[@Trace|Hop=local.eg.org;@Trace|Hop=mail.eg.org]

then it would be represented like this in XML:

<Mail>
<Subject>Hello</Subject>
<Body>How are you?</Body>
<blink:extension
xmlns:blink="http://blinkprotocol.org/ns/blink">
<Trace><Hop>local.eg.org</Hop></Trace>
<Trace><Hop>mail.eg.org</Hop></Trace>
</blink:extension>
</Mail>

Whitespace

Whitespace is ignored if it appears before or after elements
representing groups, fields, or sequence items.

Whitespace is significant, i.e, is part of the value, if it appears in
a field or sequence item element containing a primitive value as
defined here: Section 2.5 (page 2) .

Annotation Attributes

Attributes may appear freely on any element. Since any significant
value or structure is represented by elements or character data, any
attribute is treated as an annotation and is ignored.

betad - 2013-06-05

2. Basic Mapping 3 (4)

blink

Blink Message XML Format Specification

References

BLINK http://blinkprotocol.org/spec/BlinkSpec-betad.pdf

TAG http://blinkprotocol.org/spec/BlinkTagSpec-
beta4.pdf

UTF-8 http://tools.ietf.org/html/rfc3629

betad - 2013-06-05

Appendix A - References

4(4)

http://blinkprotocol.org/spec/BlinkSpec-beta4.pdf
http://blinkprotocol.org/spec/BlinkTagSpec-beta4.pdf
http://blinkprotocol.org/spec/BlinkTagSpec-beta4.pdf
http://tools.ietf.org/html/rfc3629

