
Blink Tag Format Specification

beta4 - 2013-06-14 Contents 1 (7)

Blink Tag Format Specification
beta4 - 2013-06-14

This document specifies a method for encoding messages
structured by a Blink schema into a plain text tag-value
format. The format is suitable for crafting Blink messages
in a format readable by humans while still being machine
processable.

Copyright ©, Pantor Engineering AB, All rights reserved

Contents

1 Overview. 1

2 Notation and Conventions. 1

3 Format. 2
3.1 Integer. 2
3.2 String, Binary and Fixed. 2

3.2.1 Unicode Strings. 2
3.2.2 Binary Strings. 3
3.2.3 Constraints. 3

3.3 Enumeration. 3
3.4 Boolean. 3
3.5 Decimal. 4
3.6 Floating point. 4
3.7 Time. 4
3.8 Date. 4
3.9 Time of Day. 4
3.10 Static Group. 4
3.11 Dynamic Group. 4
3.12 Sequence. 5

4 Message Extensions. 5

5 Comments and Blanks. 5

6 Error Handling. 5

Appendices

A Tag Format Grammar. 5

B References. 7

1 Overview

The core Blink specification [BLINK] defines a schema language for
specifying the structure of data messages. It also defines a binary
format for messages defined by such schema.

This specification provides a complementary format called Blink
Tag, that will represent messages defined by a Blink schema as
plain text. The purpose of this format is to be human readable while
still being machine processable.

Possible usages include:

• Crafting of short messages for test purposes
when developing new protocols or for inclusion in
documentation

• Text logging of messages in applications using Blink

• Creation of text based test data sets

• Simple string based creation of messages inside
applications

The Tag format uses self describing type and field names, also
called tags, and is line oriented: each message comprises a single
line. This makes it suitable for post-processing by generic, text
based tools like grep.

The Tag format provides full fidelity to the core specification:
any message encoded in the compact binary format can also
be represented by a message in the Tag format as long as the
contained types are defined by a schema.

The following shows what the first example in the core Blink
specification would look like in the Tag format:

Assuming the schema:

Hello -> string Greeting

a Hello message carrying the greeting "Hello World" would be
encoded as

@Hello|Greeting=Hello World

2 Notation and Conventions

Encoded bytes are written as two digit hex numbers, and if they
appear in paragraph text, they are prefixed by 0x.

This specification specifies constraints that must or can be checked
by a decoder. It specifies constraints that must be checked as
strong errors and constraints that can be checked as weak errors.
See Section 6 (page 5) for details.

Type names written in a monospaced font like this: u64, refer to the
corresponding value types in the Blink schema language.

Blink Tag Format Specification

beta4 - 2013-06-14 3. Format 2 (7)

3 Format

The following grammar [EBNF] summarizes the Tag format syntax.
The full grammar is available here: Appendix A (page 5) .

stream ::= (msg "\n")*
msg ::= type ("|" fields)? extension?
group ::= fields?
 | type extension?
 | type "|" fields extension?
fields ::= field ("|" field)*
field ::= tag "=" value
value ::= literal
 | hexList
 | "{" group "}"
 | sequence
sequence ::= "[" items? "]"
hexList ::= "[" (hex | " ")* "]"
items ::= item (";" item)*
item ::= value | group
extension ::= "|[" groups? "]"
groups ::= group (";" group)*
type ::= "@" name
tag ::= ncName
name ::= ncName | cName
cName ::= ncName ":" ncName
ncName ::= nameStart nameChar*
nameChar ::= nameStart | digit
nameStart ::= [_a-zA-Z]
digit ::= [0-9]
literal ::= literalChar*
literalChar ::= [^\x00-\x1f|[]{};#\] | escape
escape ::= "\" [n|[]{};#\]
 | "\x" twoHex
 | "\u" twoHex twoHex
 | "\U" twoHex twoHex twoHex twoHex
twoHex ::= hex hex
hex ::= [0-9a-fA-F]

A stream of Tag messages is encoded in the [UTF-8] encoding.
Each message comprises a single line. A message line starts with
an at sign (@), followed by the type name of the message, followed
by zero or more fields separated by the bar (|) character:

@Rect|Width=2|Height=3

Each field starts with the name as specified in the schema, followed
by an equal sign (=) followed by the field value. The fields can
appear in any order. It is a weak error (W1) if a field appears more
than once.

Optional fields without a value are simply left out in the Tag format:

TellTime -> string Timezone?

@TellTime
@TellTime|Timezone=UTC

In the above example the timezone field is optional, and is left out
in the first message.

It is a weak error (W2) if a mandatory field is not present in a
message. A field is mandatory if it is not marked as optional in the
schema.

If the message type was defined in a namespace, then the
namespace name should precede the message type name
separated by a colon.

Assuming the schema:

namespace Draw

Shape ->
 decimal Area?

Circle : Shape ->
 u32 Radius

a circle message would look like this:

@Draw:Circle|Radius=3|Area=28.3

The format of a field value depends on the specified type. The
following sections describe the format for each data type. These
descriptions together with the corresponding productions in the
grammar in Appendix A (page 5) formally define the syntax for
each data type.

It is a strong error (S1) if a message line in the stream does not
match the production line in the formal grammar. When matching
a message line against the grammar, the declared type of a field
should be considered when selecting the appropriate grammar
production.

3.1 Integer

An integer is represented in decimal form, possibly with a leading
minus sign. Leading zeros are allowed, but a leading plus sign is
not allowed.

@Point|X=-17|Y=4711

It is a weak error (W3) if the spcecified value is not within the range
of the declared type for the field.

3.2 String, Binary and Fixed

String, binary and fixed values are logically sequences of bytes at
the protocol level. They all share the same syntax in the Tag format,
but have different constraints. The following sections specify how
to map Tag encoded string values to such byte sequences.

3.2.1 Unicode Strings

A value can be encoded as-is if it can be represented as a valid
UTF-8 sequence:

@Singer|Name=Robyn # Value: 52 6f 62 79 6e
@Singer|Name=Björk # Value: 42 6a c3 b6 72 6b

The control characters 0x00-0x1f, and the reserved characters |
[]{};#\ must be escaped. The reserved characters are escaped
by preceding them with a backslash. In this example the pipe sign
is escaped:

Blink Tag Format Specification

beta4 - 2013-06-14 3. Format 3 (7)

@Exec|Command=du -s * \| sort -n

An embedded newline character can be represented by the escape
sequence \n:

@BlogPost|Content=<h1>Think Blink</h1>\n<p>...</p>

Other control characters can be escaped using the byte or Unicode
escape sequences described below.

Any Unicode character can be represented using Unicode escape
sequences, \uXXXX or \UXXXXXXXX, where XXXX and XXXXXXXX
are a hexadecimal numbers in the range 0x00-0x10ffff. The hex
number represents a Unicode code point. The code point number
must be exactly four or eight hexadecimal digits depending on the
start of the escape sequence.

Decoding a Unicode escape sequence results in the UTF-8 byte
sequence that corresponds to the code point.

NOTE: Surrogate code points, 0xd800-0xdfff, cannot be
represented as valid UTF-8 sequences and must therefore not
appear in Unicode escape sequences. For example, \ud800 is
not a valid Unicode escape sequence.

It is a weak error (W4) if a Unicode escape sequence does not
represent a valid code point.

The following two messages would appear identical when
comparing the bytes of the resulting value:

@Calc|Formula=π·r² # Value: cf 80 c2 b7 72 c2 b2
@Calc|Formula=\u03c0\u00b7r\u00b2

3.2.2 Binary Strings

A value that is not a valid UTF-8 sequence can be represented
using byte escape sequences or it can alternatively be encoded as
a hexadecimal list.

A byte escape sequence looks like this: \xXX, where XX is the
hexadecimal value of the byte.

Assuming a schema:

inetAddr = fixed (4)
Packet ->
 inetAddr Host,
 binary Data

a message could be encoded like this:

@Packet|Host=\x3e\x6d\x3c\xea|Data=GET / HTTP/1.0\x0d
\n\x0d\n

NOTE: The byte and Unicode escape sequences differ in that
the former results in a single byte in the decoded value, and
the latter in a UTF-8 byte sequence. For example, \xb2 results
in the single byte 0xb2, and \u00b2 results in the UTF-8
sequence for the character "superscript two", which is 0xc2
0xb2.

A hexadecimal list is a sequence of hex digits possibly separated by
spaces. The list is enclosed in square brackets ([]). The resulting
byte sequence is obtained by removing any spaces and translating
each pair of hex digits into a byte. It is a strong error (S2) if the
number of hex digits is not a multiple of two.

The host address in the previous example would look like this using
the hexadecimal list method:

@Packet|Host=[3e 6d 3c ea] # Value: 62.109.60.234

3.2.3 Constraints

The types based on byte sequences have the following type-
specific constraints.

string The byte sequence must be a valid UTF-8
sequence. If the type has a max size property,
then the byte sequence must not be longer than
the specified value.

binary If the type has a max size property, then the byte
sequence must not be longer than the specified
value.

fixed The byte sequence must have excatly the same
number of bytes as specified in the size property
on the type.

Values of all the three types, string, binary and fixed can be
represented using any of the methods described above as long as
the constraints in this section are not violated. It is a weak error
(W5) if one of these constraints is violated.

3.3 Enumeration

An enumeration value is represented by the corresponding symbol
name:

Color = Red | Green | Blue
Car -> Color Color

Assuming the schema above, the color of a couple of cars would
be represented like this:

@Car|Color=Blue
@Car|Color=Red

It is a weak error (W6) if the value is not the name of a symbol in
the corresponding enumeration in the schema.

3.4 Boolean

The Boolean values true and false are encoded as the characters
Y and N respectively:

@Logon|KeepAlive=Y

Blink Tag Format Specification

beta4 - 2013-06-14 3. Format 4 (7)

3.5 Decimal

A decimal value is encoded using a standard decimal notation
optionally followed by an exponent specifier:

@Order|Price=4711.17
@Order|Price=471117E-2
@Order|Price=47.1117E2

The three price values all represent the same decimal value:

471117 · 10-2

It is a weak error (W7) if the specified value cannot be represented
by an i64 mantissa and an i8 exponent

3.6 Floating point

A f64 value has two possible representations:

• a decimal number with an optional exponent part as
defined for the decimal type above. In addition, three
special values Inf, -Inf and NaN are allowed,

• and a hexadecimal representation of the IEEE
754-2008 bit pattern preceded by a 0x prefix. The
leftmost bit has the highest significance and is the sign
bit.

4711.17
-471117E-2 # -4711.17
0x40b2672b851eb852 # 4711.17
0x7ff0000000000000 # Inf
0xfff0000000000000 # -Inf
0xfff8000000000000 # NaN

3.7 Time

A millitime and nanotime value is represented as a combined
date and time of day in the basic or extended format as defined
in ISO 8601 [TIME]. The separating T character can be omitted in
the basic format, and it can alternatively be replaced with a single
space character. The subsecond part follows after a dot (.), and
can be omitted if it is zero. If both the second and subsecond parts
are zero, both may be omitted.

If no timezone is specified, then local time is assumed. Other
timezones may be specified as defined in ISO 8601.

2012-11-20 10:05:30.323115072 # Extended, nanotime
2012-11-20 10:05:30.323 # Extended, millitime
2012-11-20T10:05:30.323 # T as separator
2012-11-20 10:05:30 # Subsecond part is zero
2012-11-20 10:05 # Subminute part is zero

20121120 100530.323 # Basic, millitime
20121120T100530.323 # T as separator
20121120100530 # Omitted separator

2012-11-20 09:05:30Z # UTC
2012-11-20 10:05:30+01 # One hour ahead of UTC

3.8 Date

A date value is represented in a complete basic or extended format
as defined in ISO 8601 [TIME]:

2012-11-20
20121120

3.9 Time of Day

A timeOfDayMill or timeOfDayNano value is represented in a
complete basic or extended format as defined in ISO 8601 [TIME].
The subsecond part follows after a dot (.), and can be omitted if
it is zero. If both the second and subsecond parts are zero, both
may be omitted.

10:05:30.323000000
10:05:30.323
100530.323
100530
1005

3.10 Static Group

A static group value is represented by encoding the fields of the
group. When a static group appears directly as a field value, it must
be enclosed in braces ({}). If the value appears as a sequence
item, then the braces are optional.

Point -> u32 X, u32 Y
Rect -> Point Pos, u32 Width, u32 Height
Path -> Point [] Points

A couple of examples using the above schema:

@Rect|Pos={X=3|Y=4}|Width=10|Height=10 # Field value
@Path|Points=[X=1|Y=1;X=10|Y=2] # Sequence item
@Path|Points=[{X=1|Y=1};{X=10|Y=2}] # With braces

3.11 Dynamic Group

A dynamic group is encoded just as a top level message: a type
name following an at sign, followed by zero or more fields. When a
dynamic group appears directly as a field value, it must be enclosed
in braces ({}). If the value appears as a sequence item, then the
braces are optional.

Frame -> u64 SeqNo, object Payload
Update -> Record* [] Records
Record -> u64 Id
Person : Record -> string Name
Room : Record -> string Location

Assuming the above schema, an imaginary data base update could
look like this:

@Frame|SeqNo=1|Payload={@Update|Records=[@Person|
Id=1|Name=George;@Room|Id=2|Location=West wing]}

It is a weak error (W8) if the specified type name does not name
a group in the schema.

Blink Tag Format Specification

beta4 - 2013-06-14 3. Format 5 (7)

3.12 Sequence

A sequence value is represented by zero or more items enclosed
in square brackets ([]). The items are separated by semicolon (;).

[1;2;3;4] # Sequence of integers
[Pale Ale;Lager;Stout] # Sequence of strings
[X=1|Y=2;X=3|Y=4] # Sequence of static groups
[] # Empty sequence

4 Message Extensions

In Blink, a message or a dynamic group may carry unsolicited
extension content. In the Tag format, an extension appears last in
the group and is represented as a sequence field without a tag.

Mail ->
 string Subject, string To, string From, string Body
Trace ->
 string Hop

@Mail|Subject=Hello|To=you|From=me|Body=How are you?|
[@Trace|Hop=local.eg.org;@Trace|Hop=mail.eg.org]

A decoder reading the Tag format should skip and ignore
extensions with unknown types.

5 Comments and Blanks

The Tag format allows comments to appear immediately before
the newline character. A comment starts with a pound sign (#) and
extends to the end of the line. Blank lines, consisting entirely of
whitespace and possibly a comment, may appear interleaved with
the message lines.

This is a comment followed by a blank line

@Foo|Bar=Baz# This comment ends a message line
@Foo|Bar=Baz # Oops, an extra space added to the value

6 Error Handling

There are two kinds of errors:

• strong - a decoder must check for strong errors.
When a strong error occurs, the decoder must skip
the current message line being decoded. A session
oriented application can also choose to terminate the
session where the strong error occurs.

• weak - a decoder can choose to ignore a weak error
and recover from it in an implementation dependent
way. If a weak error is checked for and detected, it
should be treated in the same way as a strong error.

An encoder must not make any assumptions about how a decoder
will handle weak constraints and must comply with both strong and
weak constraints.

A Tag Format Grammar

In this grammar the letter e means empty. The escape sequence
\n means newline, and \xNN refers to a character code by two hex
digits. In all other contexts a backslash is treated literally. Nested
brackets in a character class are treated literally.

stream ::=
 e
 | line
 | line "\n" stream

line ::=
 msg
 | msg comment
 | separator

msg ::=
 dynGroup

dynGroup ::=
 type extension
 | type "|" fields extension

group ::=
 e | fields

fields ::=
 field
 | field "|" fields

field ::=
 tag "=" fieldValue

fieldValue ::=
 value | sequence

value ::=
 integer | string | hexList | enum | bool |
 decimal | f64 | timestamp | date | timeOfDay |
 "{" groupVal "}"

sequence ::=
 "[]"
 | "[" items "]"

items ::=
 item
 | item ";" items

item ::=
 value | groupVal

groupVal ::=
 group | dynGroup

extension ::=
 e
 | "|[]"
 | "|[" dynGroups "]"

dynGroups ::=
 dynGroup
 | dynGroup ";" dynGroups

type ::=
 "@" name

tag ::=
 ncName

integer ::=
 digits
 | "-" digits

string ::=

Blink Tag Format Specification

beta4 - 2013-06-14 Appendix A - Tag Format Grammar 6 (7)

 e
 | strChar string

strChar ::=
 [^\x00-\x1f|[]{};#\]
 | escape

escape ::=
 "\" [n|[]{};#\]
 | "\x" twoHex
 | "\u" twoHex twoHex
 | "\U" twoHex twoHex twoHex twoHex

twoHex ::=
 hexDigit hexDigit

hexList ::=
 "[" hexItems "]"

hexItems ::=
 e
 | hexItem hexItems

hexItem ::=
 " " | hexDigit

enum ::=
 ncName

bool ::=
 [YyNn]

decimal ::=
 decNum (exp | "-" decNum exp)

decNum ::=
 digits
 | digits "." digits

exp ::=
 e
 | [Ee] integer

f64 ::=
 decimal | hexNum | "Inf" | "-Inf" | "NaN"

timestamp ::=
 basicDate tsep basicTod basicTz
 | basicDate basicTod basicTz
 | extDate tsep extTod extTz

tsep ::=
 [T\x20]

date ::=
 basicDate | extDate

basicDate ::=
 year two two

extDate ::=
 year "-" two "-" two

year ::=
 digit digit digit digit

two ::=
 digit digit

timeOfDay ::=
 basicTod | extTod

basicTod ::=
 two two subsec
 | two two two subsec

extTod ::=
 two ":" two subsec

 | two ":" two ":" two subsec

subsec ::=
 e
 | "." digits

basicTz ::=
 tz
 | sign two two

extTz ::=
 tz
 | sign two ":" two

tz ::=
 e
 | "Z"
 | sign two

sign ::=
 [-+]

name ::=
 ncName | cName

cName ::=
 ncName ":" ncName

ncName ::=
 nameStartChar nameChars

nameChars ::=
 nameChar
 | nameChar nameChars

nameChar ::=
 nameStartChar | digit

nameStartChar ::=
 [_a-zA-Z]

digits ::=
 digit
 | digit digits

digit ::=
 [0-9]

hexNum ::=
 "0x" hexDigits

hexDigits ::=
 hexDigit
 | hexDigit hexDigits

hexDigit ::=
 [0-9a-fA-F]

separator ::=
 blank
 | blank comment

comment ::=
 "#" restOfLine

restOfLine ::=
 e
 | [\n] restOfLine

blank ::=
 e
 | [\x20\x09] blank

Blink Tag Format Specification

beta4 - 2013-06-14 Appendix B - References 7 (7)

B References

BLINK http://blinkprotocol.org/spec/BlinkSpec-beta4.pdf

EBNF http://www.w3.org/TR/2004/REC-xml-20040204/
#sec-notation

TIME http://dotat.at/tmp/ISO_8601-2004_E.pdf

UTF-8 http://tools.ietf.org/html/rfc3629

http://blinkprotocol.org/spec/BlinkSpec-beta4.pdf
http://www.w3.org/TR/2004/REC-xml-20040204/#sec-notation
http://www.w3.org/TR/2004/REC-xml-20040204/#sec-notation
http://dotat.at/tmp/ISO_8601-2004_E.pdf
http://tools.ietf.org/html/rfc3629

