
Blink Specification

beta4 - 2013-06-14 Contents 1 (13)

Blink Specification
beta4 - 2013-06-14

This document specifies a method for defining the structure
of data messages and encoding these into an efficient and
compact binary form.

Copyright ©, Pantor Engineering AB, All rights reserved

Contents

1 Overview. 1

2 Notation and Conventions. 2

3 Message Structure. 2
3.1 Integer. 2
3.2 String. 3
3.3 Binary. 3
3.4 Fixed. 3
3.5 Enumeration. 3
3.6 Boolean. 4
3.7 Decimal. 4
3.8 Floating point. 4
3.9 Time. 4
3.10 Date. 4
3.11 Time of Day. 4
3.12 Sequence. 4
3.13 Static Group. 5
3.14 Dynamic Group. 5

4 Variable-Length Code (VLC). 5
4.1 NULL. 6

5 Message Extensions. 6

6 Error Handling. 6

7 Schema Syntax. 6
7.1 Constraints. 7
7.2 Names and Namespaces. 8
7.3 Annotations. 8
7.4 Derived Type Annotation. 9

Appendices

A Schema Grammar. 10
A.1 Lexical structure. 11

B Encoding Grammar. 12

C Date Calculations. 13

D Integer Encoding and Decoding Functions. . . . 13

E References. 13

1 Overview

The Blink compact binary encoding is a format for encoding
structural data messages. The format is designed to be

• simple - it tries to minimize the number of encoding
artifacts, primitive constructs, and the ways they can be
combined,

• efficient - encoders and decoders can be efficiently
implemented in software or hardware,

• and compact - encoded messages are reasonably
compact due to the extensive use of variable-length
coded data fields and the lack of inline meta data.

A Blink message comprises a size, a type identifier and a sequence
of ordered and typed fields. Field types include integer, string,
binary, Boolean, decimal, floating point, time, date, sequence and
subgroup.

The structure of a Blink message is defined in a schema. Formally
the schema is a logical concept but this specification defines and
uses a concrete schema syntax. Implementations and users of the
Blink protocol are encouraged, but not required, to support and use
this syntax.

The encoding of integers and types derived from integers use
a Variable-Length Code (VLC) approach. The VLC encoding
results in fields of variable size: numbers with smaller magnitude
consume fewer bytes than numbers with greater magnitude. This
gives greater flexibility to the selection of the value ranges while
maintaining messages reasonably compact.

Blink allows fields to be marked as optional in the schema. Optional
fields use a nullable encoding that is specific to the type of the field.

Blink messages are extensible and can carry unsolicited content in
a controlled way. This means that decoders that do not know or
do not care about an extension can ignore it. The extensions are
encoded in Blink themselves.

The following is a small teaser just to show what an encoded blink
message can look like. Given a schema

Hello/1 -> string Greeting

a Hello message carrying the greeting "Hello World" would be
encoded as

0d 01 0b 48 65 6c 6c 6f 20 57 6f 72 6c 64

or annotated:

0d // Msg size: 13 bytes follow
01 // Msg type Hello has ID 1
0b // String length: 11 bytes follow
48 65 6c 6c 6f 20 // "Hello World"
57 6f 72 6c 64 // ...

Blink Specification

beta4 - 2013-06-14 2. Notation and Conventions 2 (13)

2 Notation and Conventions

Encoded bytes are written as two digit hex numbers, and if they
appear in paragraph text, they are prefixed by 0x.

This specification specifies constraints that must or can be checked
by a decoder. It specifies constraints that must be checked as
strong errors and constraints that can be checked as weak errors.
See Section 6 (page 6) for details.

Type names written in a monospaced font like this: u64, refer to the
corresponding value types in the schema language. The encoding
of such values are as specified in this specification.

3 Message Structure

A Blink message, or more general a group, consists of a preamble
followed by a sequence of typed data fields. The preamble
comprises a group size followed by a numerical type identifier.

NOTE: The terms message and group are used
interchangeably. A group is the general construct and a
message is simply a group used in a message passing context.

Figure 3-1 Message Layout

The size preamble specifies the number of bytes that follow after
it. The size preamble is encoded as a u32. However, a particular
application may put additional constraints on the maximum allowed
size. It is a weak error (W1) if the size is zero.

The type identifier links a group instance with the corresponding
definition in the schema. The type identifier is encoded as an u64.
Typically you want to keep identifiers as short as possible, but
the wider range is provided to allow for hash based identification
schemes for example. It is a weak error (W2) if the type identifier
is not known to a decoder.

The data fields are not self-describing and their order is therefore
significant and must follow the order specified in the corresponding
group definition in the schema.

It is a strong error (S1) if a group ends prematurely. A group ends
prematurely if all bytes, as specified by the group size, have been
consumed and there is still at least one non-nullable field left that
has not been processed. This means that a decoder should treat a
group as if it is logically extended with an infinite sequence of null
values.

In the schema syntax, a group is defined by the group name
followed by an arrow (->) followed by a comma-separated list of
field definitions. Each field definition has a type and a name:

Order/17 ->
 string Symbol,
 decimal Price,
 decimal Volume

In this example the group name is annotated with the type identifier
17.

The schema syntax supports single inheritance. A group can
specify a supergroup by following the group name by a colon and
a reference to the supergroup:

Shape -> ... # Base
Rect : Shape -> ... # Inherits all fields from Shape

For the full definition of the schema syntax, see Section 7 (page
6) .

The following sections define the available data types. In addition to
the normal encoding, each data type has a nullable representation
that is used when a field is specified as optional in the schema.
Optional fields are followed by a question sign (?) in the schema
syntax:

string Comment? # Optional field

3.1 Integer

Integers are signed or unsigned and are available in the widths
8, 16, 32 and 64 bits. All integer values are VLC encoded, see
Section 4 (page 5) . Signed integers use a two's complement
representation where the most significant data bit is the sign bit
[TWOC].

40 // 64 unsigned
80 01 // 64 signed
a7 49 // 4711
c4 ff ff ff ff // 4294967295 (u32 max)
40 // -64 signed
99 b6 // -4711 signed
c4 00 00 00 80 // -2147483648 (i32 min)

The encoding does not depend on the specified bit width, but
its serves as a dimension and range specifier for the application.
However, it does matter if the type is signed or unsigned since
the first bit becomes the sign bit in the former case. This is
demonstrated in the example above where the integer 64 has
different encodings in the signed and unsigned cases. Since the
highest data bit is set in 0x40, this would be interpreted as the sign
bit if the value was treated as signed integer. Therefore, an extra
byte is needed to make room for a zero sign bit: 0x80 0x01.

It is a weak error (W3) if the decoded value overflows the range
implied by the specified width. It is also a weak error (W4) if the VLC
entity contains more bytes than needed to express the full width of
the type, that is, if the byte count is greater than (width/8)+1.

A special VLC entity, 0xc0, is used to represent NULL. The VLC
meaning of this entity is an entity with no data bits and can therefore
never appear when encoding a normal integer. This means that
integers need no special nullable encoding.

It is a weak error (W5) if the special NULL value appears in a field
that is not declared optional in the schema.

In the schema syntax, the integer types are named by the letter u for
unsigned and i for signed, followed by the bit width. For example:
u8 and i32 would mean unsigned 8-bit and signed 32-bit integers
respectively.

Blink Specification

beta4 - 2013-06-14 3. Message Structure 3 (13)

3.2 String

A string value is encoded as a size preamble followed by the
specified number of UTF-8 encoded bytes. The size preamble is
encoded as an u32. It is a weak error (W6) if the bytes do not form
a valid [UTF-8] sequence.

A nullable string field uses a nullable size preamble.

05 48 65 6c 6c 6f // "Hello"
0d 52 c3 a4 6b 73 // "Räksmörgås"
6d c3 b6 72 67 c3 a5 73 // ...
00 // Empty string

In the schema syntax, the string type is named string.

An optional max size property can be specified on the string type to
indicate the maximum number of bytes it can store. The maximum
size is specified as an unsigned integer enclosed in parentheses. It
is a weak error (W7) if a string exceeds the specified maximum size.

The maximum size serves as a hint to implementations and can also
be used by alternative encodings to indicate that a more efficient
represention of the string should be used. It is however not utilized
in the compact binary format defined by this specification.

string # Plain UTF-8 string
string (17) # String with max size 17

3.3 Binary

A binary value is encoded as a size preamble followed by the
specified number of bytes. The size preamble is encoded as an u32.

A nullable binary field uses a nullable size preamble.

04 de ad be ef // "\xde\xad\xbe\xef"
00 // Empty binary

In the schema syntax, the binary type is named binary.

An optional max size properety can be specified on the binary
type to indicate the maximum number of bytes it can store. The
maximum size is specified as an unsigned integer enclosed in
parentheses. It is a weak error (W8) if a binary value exceeds the
specified maximum size.

The maximum size serves as a hint to implementations and can also
be used by alternative encodings to indicate that a more efficient
represention of the binary should be used. It is however not utilized
in the compact binary format defined by this specification.

It is recommended that binary types are annotated to specify the
underlying type more precisely using the @blink:type annotation.
See Section 7.4 (page 9) .

Given this definition:

bigInt = @blink:type="BigInt" binary

then the 13th Fibonacci prime 1066340417491710595814572169
can be encoded like this:

0c 03 72 0e 5d dc d8 a3 1e 44 36 c0 89

3.4 Fixed

A fixed value is encoded as a fixed-length sequence of bytes. The
number of bytes is specified on the type in the schema.

A nullable fixed field is preceded by a presence flag byte. If the value
is present, then the flag byte is 0x01. It is a weak error (W9) if the
flag is not 0xc0 (NULL) or 0x01. If the presence flag is null, then it
is not followed by the fixed bytes.

In the schema syntax, the fixed type is named fixed and is followed
by the fixed size enclosed in parentheses.

It is recommended that fixed types are annotated to specify the
underlying type more precisely using the @blink:type annotation.
See Section 7.4 (page 9) .

Given this definition:

inetAddr = @blink:type="InetAddr" fixed (4)

an address can be encoded like this:

3e 6d 3c ea // 62.109.60.234

3.5 Enumeration

An enumeration type is a fixed set of symbols representing distinct
signed 32-bit integer values. The value is encoded as an i32. It is
a weak error (W10) if the value does not correspond to any symbol
in the schema.

A nullable enumeration field is encoded using a nullable i32
integer.

In the schema syntax, an enumeration is a sequence of symbols
separated by a bar (|) character. Enumerations may only appear on
the right hand side of a type definition. This means that they cannot
appear directly in a field definition.

Size = Small | Medium | Large

A symbol can have an explicit or implicit integer value. Explicit
integer values are specified by appending a slash (/) and the value
after the symbol:

Size = Small/38 | Medium/40 | Large/42
Color = Red/0xff0000 | Green/0x00ff00 | Blue/0x0000ff
Month = Jan/1 | Feb | Mar ...

An implicit symbol value will have the value of the preceding symbol
incremented by one. If there is no preceding symbol, then the
implicit value is zero. A value may alternatively be specified as a
hex number.

An enumeration with only a single symbol, which should be
uncommon, is specified with a leading bar character. This is needed
to make it distinct from the syntax of a type reference:

Blink Specification

beta4 - 2013-06-14 3. Message Structure 4 (13)

Singleton = | Lonely

3.6 Boolean

A Boolean value has the logical values true and false. A Boolean
value is encoded an u8 with the possible values 0 and 1. It is a weak
error (W11) if the decoded value is not 0 or 1.

A nullable Boolean field is encoded as a nullable u8.

In the schema syntax, the Boolean type is named bool.

3.7 Decimal

A decimal number is encoded as a composite entity comprising
a signed 8-bit integer exponent E followed by a signed 64-bit
integer mantissa M. The decoded value is obtained by the following
calculation:

M · 10E

A nullable decimal field is encoded using a nullable exponent. If the
exponent is null, then no mantissa follows.

7e c2 10 27 // 10000 · 10-2 = 100.00

In the schema syntax, the decimal type is named decimal.

3.8 Floating point

A floating point value is encoded as a double precision 64-bit
floating point number as defined in IEEE 754-2008. The bits are
encoded as an u64.

A nullable floating point field is encoded using a nullable u64
integer.

c8 1b de 83 42 ca c0 f3 3f // 1.23456789
c8 00 00 00 00 00 00 f0 7f // Infinity

In the schema syntax, the floating point type is named f64.

3.9 Time

A timestamp is encoded as an i64. The integer represents the time
elapsed since the UNIX epoch: 1970-01-01 00:00:00.000000000
UTC. A negative timestamp indicates a point in time before
the epoch. A timestamp uses either millisecond or nanosecond
precision.

A nullable timestamp field is encoded using a nullable i64.

// 2012-10-30 00:00:00 GMT+1

c8 00 60 9c f5 04 ad c1 12 // nanotime
c6 80 c5 c0 ae 3a 01 // millitime

In the schema syntax, a timestamp is specified as nanotime
or millitime for nanosecond and millisecond precisions
respectively.

3.10 Date

A date is encoded as an i32 representing the number of days since
the Blink date epoch: 2000-01-01. A date is symbolic in the sense
that it does not imply any specific timezone. It is up to the application
to define how a particular date value is to be interpreted if used to
specify a specific point in time.

Given a date, the number of days since the date epoch is
calculated according to a proleptic Gregorian calendar [GREG].
Proleptic means that the calculation rules extend to dates before
the Gregorian calender was defined. A method for date conversion
is outlined in Appendix C (page 13) .

A nullable date field is encoded using a nullable i32.

8e 49 // 2012-10-30

In the schema syntax, the date type is named date.

3.11 Time of Day

The time of day is represented as the number of milliseconds or
nanoseconds since midnight. The value is encoded as an u32 in
the millisecond case, and as an u64 in the nanosecond case.

A time of day value is symbolic in the sense that it does not imply
any specific timezone. It is up to the application to define how a
particular time of day value is to be interpreted if used to specify a
specific point in time.

It is a weak error (W12) if the decoded value represents 24 hours
or more, that is, if it is greater than 86399999 or 86399999999999
depending on the precision.

A nullable time of day field is encoded using a nullable u32 or u64
depending on the precision.

In the schema syntax, a time of day type is named timeOfDayMilli
and timeOfDayNano for the millisecond and nanosecond
precisions respectively.

3.12 Sequence

A sequence of items is encoded with an u32 length preamble
specifying the number of items that follow. An item can be of any
value type, except for sequence. All sequences except sequences
of dynamic groups (page 5) , are homogeneous, that is, all
items share the same type. In sequences of dynamic groups with
a specified base type, all items share this same base type, but the
actual type can vary between items. In sequences of type object,
there are no constraints on the actual group type of an item.

A nullable sequence field is encoded using a nullable length
preamble.

03 01 02 03 // [1, 2, 3]
02 03 66 6f 6f 03 62 61 72 // ["foo", "bar"]

Blink Specification

beta4 - 2013-06-14 3. Message Structure 5 (13)

00 // Empty sequence

In the schema syntax, a sequence type is indicated by two brackets
([]) following a type specifier.

u32 [] # Sequence of unsigned integers
string [] # Sequence of strings
Thing [] # Sequence of static Thing groups
Gadget* [] # Sequence of dynamic Gadget groups
object [] # Sequence of dynamic groups of any type

3.13 Static Group

A static subgroup is just a logical grouping of subfields and has no
additional extent of its own when encoded.

A nullable static subgroup field is preceded by a presence flag byte.
If the subgroup is present, then the flag byte is 0x01. It is a weak
error (W13) if the flag is not 0xc0 (NULL) or 0x01. If the presence
flag is null, then the fields of the subgroup are not encoded.

In the schema syntax, the use of a group type is indicated by
specifying the name of the group or a type reference that resolves
to a group type.

Given these definitions:

StandardHeader ->
 u64 SeqNo,
 millitime SendingTime

MyMessage/2 ->
 StandardHeader Header,
 string Text

and a message:

MyMessage:
 SeqNo: 1
 SendingTime: 2012-10-30 00:00:00 GMT+1
 Text: Hello

it would be encoded as:

Sz Id SeqNo SendingTime Text
0e 02 01 c6 80 c5 c0 ae 3a 01 05 48 65 6c 6c 6f

3.14 Dynamic Group

A dynamic subgroup has a size and type identifier preamble
preceding the subfields. The type identifier specifies the actual type
of the group. A dynamic group has the exact same structure as
a top level message, including the ability to carry an unsolicited
extension, see Section 3 (page 2) . It is a weak error (W14) if
the type identifier is not known to a decoder.

A nullable dynamic subgroup field is encoded using a nullable size
preamble. If the length preamble is null, then no type identifier or
fields follow.

In the schema syntax, the use of a dynamic group is indicated by
an asterisk (*) following the name of a group type reference. It

is a weak error (W15) if the actual type specified by the identifier
appearing in the dynamic group does not refer to a type that
is structurally compatible with the type specified in the schema,
the declared type. When using the schema model defined in this
specification this means that the actual type must be the same as
the declared type or that the declared type is an ancestor through
inheritance of the actual type.

The schema syntax also has a type named object that specifies a
value that can hold a dynamic group of any type.

Given these definitions:

Shape ->
 decimal Area

Rect/3 : Shape ->
 u32 Width, u32 Height

Circle/4 : Shape ->
 u32 Radius

Canvas/5 ->
 Shape* [] Shapes

and a message:

Canvas:
 Shapes: [
 Rect: Area: 6.0 Width: 2 Height: 3
 Circle: Area: 28.3 Radius: 3
]

it would be encoded as:

0e // Msg size: 14
05 // Msg type Canvas has ID 5
02 // Canvas.Shapes has two items
05 // First item group has size 5
03 // Group type Rect has ID 3

7f 3c // Rect.Area = 60 · 10-1

02 // Rect.Width = 2
03 // Rect.Height = 3
05 // Second item group has size 5
04 // Group type Circle has ID 4

7f 9b 04 // Circle.Area = 283 · 10-1

03 // Circle.Radius = 3

4 Variable-Length Code (VLC)

Any integer value or value that is derived from an integer, like a
timestamp, is encoded with a variable-length code. Also, integers
that are artifacts of the Blink encoding itself, like size preambles and
type identifiers, use VLC encoding.

The VLC encoding used here is a hybrid of a prefix code at the
bit level combined with a prefix byte at the byte level. This hybrid
is designed to strike a balance between compactness of small
integers and processing speed of larger integers.

There are three basic forms of VLC entities. Each form is identified
by the leading bits of the first byte:

• The one bit prefix 0 indicates that the entity comprises
a single byte with 7 data bits.

Blink Specification

beta4 - 2013-06-14 4. Variable-Length Code (VLC) 6 (13)

• The two bit prefix 10 indicates that the entity comprises
two bytes and has 14 data bits where the 6 least
significant bits are stored after the bit prefix in the first
byte.

• The two bit prefix 11 indicates that the following six bits
is an integer that specifies how many bytes with data
bits that follow.

In the two multibyte forms, the entity uses little-endian byte order.
That is, bytes with lower order bits precede bytes with higher order
bits.

The three forms can be illustrated at the bit level like this:

0 b6b5b4b3b2b1b0 7 data bits
1 0 b5b4b3b2b1b0 b13b12b11b10b9b8b7b6 14 data bits
1 1 n5n4n3n2n1n0 [n bytes] n · 8 data bits

Functions for encoding and decoding VLC entities are outlined in
Appendix D (page 13) .

4.1 NULL

A single null value is used for all data types to indicate the absence
of a field value: 0xc0.

5 Message Extensions

Any message or dynamic subgroup can carry extra extension data.
A decoder detects the presence of an extension when the specified
size of a group is larger than the bytes consumed when all defined
fields have been processed. An extension is encoded just as a
sequence of dynamic subgroups. That means that the extension
appears as if a field like this ended the group:

object [] Extension

A decoder can choose to ignore an extension altogether, or it can
decode it and process some or all of the contained groups based
on their type identifiers.

Given these definitions:

Mail/7 ->
 string Subject, string To, string From, string Body
Trace/8 ->
 string Hop

and a message:

Mail:
 Subject: Hello
 To: you
 From: me
 Body: How are you?

and two extension groups:

Trace:
 Hop: local.eg.org
Trace:

 Hop: mail.eg.org

it would be encoded as:

39 // Msg size: 57 incl. extension
07 // Msg type Mail has ID 7
05 48 65 6c 6c 6f // Mail.Subject
03 79 6f 75 // Mail.To
02 6d 65 // Mail.From
0c 48 6f 77 20 61 72 // Mail.Body
65 20 79 6f 75 3f // ...

// Extension:

02 // Extension group count
0e // Size of first extension
08 // Group type Trace has ID 8
0c 6c 6f 63 61 6c 2e // Trace.Hop
65 67 2e 6f 72 67 // ...
0d // Size of second extension
08 // Group type Trace has ID 8
0b 6d 61 69 6c 2e 65 // Trace.Hop
67 2e 6f 72 67 // ...

6 Error Handling

There are two kinds of errors:

• strong - a decoder must check for strong errors. When
a strong error occurs, the decoder must skip the
current message being decoded. A session oriented
application can also choose to terminate the session
where the strong error occurs.

• weak - a decoder can choose to ignore a weak error
and recover from it in an implementation dependent
way. If a weak error is checked for and detected, it
should be treated in the same way as a strong error.

An encoder must not make any assumptions about how a decoder
will handle weak constraints and must comply with both strong and
weak constraints.

7 Schema Syntax

This section defines the overall schema semantics and schema
specific artifacts. The schema syntax of the individual data types is
defined in the corresponding subsections defining the encoding of
each type in Section 3 (page 2) .

The following grammar [EBNF] summarizes the schema syntax.
The full grammar is available here: Appendix A (page 10) .

schema ::= nsDecl? def*
nsDecl ::= "namespace" name
def ::= define | groupDef
define ::= name "=" (enum | type)
groupDef ::= name ("/" id)? (":" qName)?
 ("->" fields)?
fields ::= field ("," field)+
field ::= type name "?"?
type ::= single | sequence
single ::= ref | time | number | string | binary |
 fixed | "bool" | "object"
sequence ::= single "[" "]"
string ::= "string" ("(" uInt ")")?
binary ::= "binary" ("(" uInt ")")?
fixed ::= "fixed" "(" uInt ")"

Blink Specification

beta4 - 2013-06-14 7. Schema Syntax 7 (13)

ref ::= qName | qName "*"
number ::= "i8" | "u8" | "i16" | "u16" | "i32" |
 "u32" | "i64" | "u64" | "f64" |
 "decimal"
time ::= "date" | "timeOfDayMilli" |
 "timeOfDayNano" | "nanotime" |
 "millitime"
enum ::= "|" sym | sym ("|" sym)+
sym ::= name ("/" val)?
val ::= int | hexNum
id ::= uInt | hexNum
qName ::= name | cName
name ::= (ncName - keyword) | "\" ncName
keyword ::= "i8" | "u8" | "i16" | "u16" | "i32" |
 "u32" | "i64" | "u64" | "f64" |
 "decimal" | "date" | "timeOfDayMilli" |
 "timeOfDayNano" | "nanotime" |
 "millitime" | "bool" | "string" |
 "object" | "namespace" | "type" |
 "schema"
cName ::= ncName ":" ncName
ncName ::= [_a-zA-Z] [_a-zA-Z0-9]*
hexNum ::= "0x" [0-9a-fA-F]+
int ::= "-"? uInt
uInt ::= [0-9]+

A schema is a sequence of group and type definitions. The order
of the definitions in a schema is not significant. This means that a
definition is allowed to refer to a definition appearing later in the
same schema file. An application accepting schema files should
extend the unordered property across multiple schemas. This
means that a definition in one schema can refer to a type defined
in another schema available in the same application.

Group definitions are the most central part of the schema since they
ultimately define the structure of the messages in a protocol based
on Blink. A group definition lists the fields and their types. A group
can optionally inherit from a supergroup. Only a single supergroup
can be specified.

The simplest possible group definition, albeit perhaps not the most
useful one, is an empty group. An empty group has no fields and
no supergroup and is simply specified as the group name:

MyEmptyMsg

The fields of a group follow after an arrow (->) following the group
name. Each field is a pair comprising a type specifier and a field
name. Fields are separated by a comma (,):

DbCommand ->
 u64 SeqNo,
 Action Action,
 u32 Id,
 string Value?

Fields can be mandatory or optional. A field is mandatory by default.
A field followed by a question sign (?) is optional. Optional fields are
encoded using the nullable format of the specified type.

A group can specify a single supergroup reference following a colon
(:) following the group name:

Shape ->
 decimal Area

Rect : Shape ->
 u32 Width, u32 Height

Circle : Shape ->
 u32 Radius

The group that inherits from the supergroup will have all the fields,
direct or indirect through inheritance, of its supergroup appearing
before its own fields when encoded.

Types can be given names through type definitions. A type
definition is a name followed by an equal sign (=), followed by a
type specifier. The definition makes it possible to refer to the type
specifier through that name.

Color = Red | Green | Blue # Enum
Colors = Color [] # Sequence of colors
Price = decimal # Price is a decimal

In order to encode a message or dynamic group, it must have
a numerical type identifier. An implementation can have several
methods of assigning identifiers to group types. The schema syntax
provides one such method: a type identifier can follow a slash (/)
following the name of a group:

DbCommand/9 ->
 u64 SeqNo,
 ...

A type identifier may also be specified in a hexadecimal notation:

TypeWithHashBasedId/0xc36e5dfa9bc0af3d

Comments are allowed in a schema. They start with a pound sign
(#) and extend to the end of the line:

This is a comment

7.1 Constraints

Definitions must have unique names. Type definitions and group
definitions are treated the same in this regard. This means that if two
definitions share the same namespace, then they must not share
the same name.

Color = Red | Green | Blue
Color -> # Ambiguous
 u32 Red, u32 Green, u32 Blue

Field names must be unique within a group and a field name must
not shadow any inherited field.

Base ->
 string Field1
Derived : Base ->
 string Field1 // Error, shadows Base.Field1

A sequence type specifier must not directly, nor indirectly through
a type reference, specify a sequence as the item type.

Matrix = u32 [] [] # Not allowed

Row = string []

Blink Specification

beta4 - 2013-06-14 7. Schema Syntax 8 (13)

Table = Row [] # Not allowed

A type reference used when specifying a supergroup or when
specifying a dynamic group type must resolve to a group type.

Foo = u32
Bar : Foo # Cannot inherit from an u32
Baz -> Foo* Data # Error, Foo is not a group

The symbols within an enumeration must have unique names and
the values of the symbols must be distinct:

Month = Jan/1 | Feb | Mar/2 # Value 2 is ambiguous

A type definition must not directly or indirectly through chained
references refer to itself.

A group definition must not directly or indirectly refer to itself through
a supergroup or field type reference, unless at least one step in the
chain of references is specified as dynamic.

A reference to a supergroup must not be dynamic, and it must not
refer to a sequence.

The grammar for the lexical structure specifies that an integer or hex
token can end in a non-numerical suffix: numSuffix. It is an error if
such suffix is not empty. It is only present in the grammar to prevent
names to follow directly after a number without any punctuation or
whitespace in between.

7.2 Names and Namespaces

A schema may optionally start with a namespace declaration:

namespace Fix

Sym = string
Px = decimal
Qty = decimal

All type and group definitions in a schema file that has a namespace
declaration belongs to that namespace. Namespaces are not
needed in references within a schema, but become important when
referring to types across schemas and in other external contexts.
It is recommended that all real world schemas carry a declaration
with a short, descriptive, namespace.

Definitions in a schema lacking a namespace declaration belong to
the null namespace.

A type reference can be qualified by a namespace by prefixing the
name with the namespace name and a colon (:):

EnterOrder ->
 Fix:Sym Symbol,
 Fix:Px Price,
 Fix:Qty Volume

A type reference with an unqualified name will first be resolved
using the same namespace as the schema where it appears. If
there is no match using this namespace, it will try to find a matching
type in the null namespace.

Given the following two schemas:

Type1 = u8 # 1
Type2 = u8 # 2
Type3 = u8 # 3

and

namespace Ns1
Type3 = u32 # 4

references are resolved as indicated in the comments below:

namespace Ns1

Type1 = u32 # 5

Test ->
 Type1 f1, # uses 5 (5 shadows 1)
 Type2 f2, # uses 2
 Type3 f3 # uses 4 (4 shadows 3)

Names matching the non-terminal keyword in the grammar cannot
be used directly as names in definitions and references. By
preceding a keyword by a backslash (\), the keyword is quoted and
can be used as a name.

decimal -> i32 exp, i64 mant # Not allowed
\decimal -> i32 exp, i64 mant # OK

7.3 Annotations

Most components of a schema can be extended with annotations.
Annotations do not affect how messages are encoded but carry
additional information to be consumed by applications or humans.

An annotation starts with an at sign (@) followed by a name and a
string value. The name may optionally be prefixed by a namespace
name. The namespace names used in annotations are in no way
related to the namespaces used in the schema itself.

There are two kinds of annotations: inline and incremental. Inline
annotations directly precede the annotated component in the
schema:

@doc="An annotated group definition"
Group1 ->
 string Text

Group2 ->
 @doc="An annotated type" string Text

Group3 ->
 string @doc="An annotated field" Text

Multiple inline annotations can precede the same component:

@doc="Initiates a session"
@code:class="Session::Logon"
Logon -> string User, string Password

Blink Specification

beta4 - 2013-06-14 7. Schema Syntax 9 (13)

If the same annotation name appears more than once in a sequence
of annotations, later occurrences have higher precedence than
earlier.

Long annotation value literals can be split into smaller literals. The
value of the annotation is the concatenation of all the literal parts:

@long="The quick brown fox"
 "jumps over the lazy dog"

Field and type definition names can carry a special numeric
identifier just in the same way as the type identifier can be specified
on group definitions. However, these identifiers do not have any
special meaning defined by this specification and are regarded as
annotations.

Symbol/55 = string
Logout -> string Text/58

The incremental method allows annotations to be specified out-of-
line. They can be specified in the same schema or in a schema
different from the component they annotate. An incremental
annotation starts with a component reference followed by a left
arrow (<-) followed by a sequence of annotations separated by left
arrows. Both name-value annotations and numerical identifiers can
be specified this way.

The component reference is a type reference followed by an
optional field or enum symbol name separated by a dot (.):

Msg -> string Payload

and

Msg <- 4711 <- @doc="A simple message"
Msg.Payload <- @doc="The data"

has the same meaning as

@doc="A simple message"
Msg/4711 -> string @doc="The data" Payload

To annotate the type specifier of a type definition or a field, the
type reference or field name can be followed by the keyword type
following a dot:

ShortStr = string

and

ShortStr.type <- @code:maxSize="10"

has the same meaning as

ShortStr = @code:maxSize="10" string

If the type reference resolves to a type definition and there is a name
following the reference, then the type definition should contain an
enumeration, and the name points out the symbol to which the
annotation applies:

Color = Red | Green | Blue

and

Color.Blue <- @deprecated="yes"

has the same meaning as

Color = Red | Green | @deprecated="yes" Blue

A special form of incremental annotations start with the keyword
schema and indicates that the annotations that follow apply to the
schema as a whole:

schema <- @version="1.0" <- @author="George"

Implementations recognizing schema annotations are encouraged
to convey any namespace that was declared in the schema where
the annotation appears. This way schema annotations are allowed
to be grouped by namespace.

In an application, incremental annotations are to be applied after
all definitions in all schemas are known. If a definition has an
inline annotation with the same name as an incremental annotation,
then the incremental annotation takes precedence. The same holds
for numerical identifiers. If an incremental annotation or numerical
identifier is specified multiple times within the same schema file,
later occurrences take precedence. If an application reads multiple
schemas, then the inter-schema order of incremental annotations
is undefined as far as this specification is concerned.

7.4 Derived Type Annotation

The annotation blink:type can be added to a type in the schema
to specify a specialization. The value of the annotation is a name
of the derived type.

The purpose of the annotation is to indicate additional constraints
and semantics that can be utilized by a particular application.

A library of standard derived types is maintained at http://
blinkprotocol.org/. If possible, it is recommended that types are
selected from this library to increase interoperability.

This is an example of some of the standard derived types:

uuid = @blink:type="UUID" fixed (16)
bigInt = @blink:type="BigInt" binary
xml = @blink:type="XML" string

http://blinkprotocol.org/
http://blinkprotocol.org/

Blink Specification

beta4 - 2013-06-14 Appendix A - Schema Grammar 10 (13)

A Schema Grammar

In this grammar the letter e means empty. The escape sequence
\n means newline, and \xNN refers to a character code by two
hex digits. In all other contexts a backslash is treated literally.
Whitespace and comments are allowed between tokens. The
tokens in the lexical structure part below are treated as single
tokens and may not contain internal whitespaces or comments.

schema ::=
 defs
 | nsDecl defs

nsDecl ::=
 "namespace" name

defs ::=
 e
 | def defs

def ::=
 annots define
 | annots groupDef
 | incrAnnot

define ::=
 nameWithId "=" annots (enum | type)

groupDef ::=
 nameWithId super body

super ::=
 e
 | ":" qName

body ::=
 e
 | "->" fields

fields ::=
 field
 | field "," fields

field ::=
 annots type annots nameWithId opt

opt ::=
 e
 | "?"

type ::=
 single | sequence

single ::=
 ref | time | number | string | binary | fixed |
 "bool" | "object"

sequence ::=
 single "[" "]"

string ::=
 "string"
 | "string" size

binary ::=
 "binary"
 | "binary" size

fixed ::=
 "fixed" size

size ::=
 "(" uInt ")"

ref ::=

 qName
 | qName "*"

number ::=
 "i8" | "u8" | "i16" | "u16" | "i32" | "u32" |
 "i64" | "u64" | "f64" | "decimal"

time ::=
 "date" | "timeOfDayMilli" |"timeOfDayNano" |
 "nanotime" | "millitime"

enum ::=
 "|" sym
 | sym "|" syms

syms ::=
 sym
 | sym "|" syms

sym ::=
 annots name val

val ::=
 e
 | "/" (int | hexNum)

annots ::=
 e
 | annot annots

annot ::=
 "@" qNameOrKeyword "=" literal

literal ::=
 literalSegment
 | literalSegment literal

nameWithId ::=
 name id

id ::=
 e
 | "/" (uInt | hexNum)

incrAnnot ::=
 compRef "<-" incrAnnotList

compRef ::=
 "schema"
 | qName
 | qName "." "type"
 | qName "." name
 | qName "." name "." "type"

incrAnnotList ::=
 incrAnnotItem
 | incrAnnotItem "<-" incrAnnotList

incrAnnotItem ::=
 int | hexNum | annot

Blink Specification

beta4 - 2013-06-14 Appendix A - Schema Grammar 11 (13)

A.1 Lexical structure

When reading a schema, the sequence of characters is split into
tokens by repeatedly finding the longest subsequence of characters
that matches:

• any of the literal string terminals in the grammar above,

• the non-terminals name, cName, hexNum, int, uInt,
literalSegment; or

• the non-terminal separator

The sequence of tokens is then matched against the grammar
above. Tokens that match the non-terminal separator are ignored.

qName ::= name |
 cName

qNameOrKeyword ::=
 qName | keyword

name ::=
 (ncName - keyword)
 | "\" ncName

keyword ::=
 "i8" | "u8" | "i16" | "u16" | "i32" | "u32" |
 "i64" | "u64" | "f64" | "decimal" | "date" |
 "timeOfDayMilli" | "timeOfDayNano" | "nanotime" |
 "millitime" | "bool" | "string" | "binary" |
 "fixed" | "object" | "namespace" | "type" |
 "schema"

cName ::=
 ncName ":" ncName

ncName ::=
 nameStartChar nameChars

nameChars ::=
 nameChar
 | nameChar nameChars

nameChar ::=
 nameStartChar | digit

nameStartChar ::=
 [_a-zA-Z]

hexNum ::=
 "0x" hexDigits numSuffix

hexDigits ::=
 hexDigit
 | hexDigit hexDigits

hexDigit ::=
 [0-9a-fA-F]

int ::=
 uInt
 | "-" uInt

uInt ::=
 digits numSuffix

digits ::=
 digit
 | digit digits

digit ::=
 [0-9]

numSuffix ::=
 e

 | nameChars

literalSegment ::=
 quoteStrLit | aposStrLit

quoteStrLit ::=
 '"' strNoQuote '"'

aposStrLit ::=
 "'" strNoApos "'"

strNoQuote ::=
 e
 | [^"\n] strNoQuote

strNoApos ::=
 e
 | [^'\n] strNoApos

separator ::=
 [\n\t] | "#" restOfLine

restOfLine ::=
 e
 | [^\n] restOfLine

Blink Specification

beta4 - 2013-06-14 Appendix B - Encoding Grammar 12 (13)

B Encoding Grammar

This grammar gives an overview of the encoding structure.

In this grammar the letter e means empty.

stream ::=
 e
 | dynGroup stream

dynGroup ::=
 length typeId group extension

group ::=
 e
 | field group

nullableGroup ::=
 null
 | "\x01" group

extension ::=
 e
 | length dynGroups

dynGroups ::=
 e
 | dynGroup dynGroups

field ::=
 value | sequence | nullableGroup | nullableFixed |
 null

sequence ::=
 length items

items ::=
 e
 | value items

value ::=
 u8 | i8 | u16 | i16 | u32 | i32 | u64 | i64 |
 f64 | decimal | millitime | nanotime | date |
 timeOfDayMilli | timeOfDayNano | group | dynGroup |
 string | binary | fixed | bool

u8 ::= vlcEntity
i8 ::= vlcEntity
u16 ::= vlcEntity
i16 ::= vlcEntity
u32 ::= vlcEntity
i32 ::= vlcEntity
u64 ::= vlcEntity
i64 ::= vlcEntity
bool ::= vlcEntity
f64 ::= vlcEntity

decimal ::=
 exponent mantissa

mantissa ::= i64
exponent ::= i8

string ::=
 length bytes

binary ::=
 length bytes

length ::= u32

fixed ::=
 bytes

nullableFixed ::=
 null

 | "\x01" fixed

millitime ::= i64
nanotime ::= i64
date ::= i32
timeOfDayMilli ::= u32
timeOfDayNano ::= u64

typeId ::= u64

bytes ::=
 e
 | byte bytes

byte ::=
 [\x00-\xff]

vlcEntity ::=
 vlcOne | vlcTwo | vlcN;

vlcOne ::=
 cc ["\x00", "-", "\x7f"];

vlcTwo ::=
 cc ["\x80", "-", "\xbf"] byte;

vlcN ::=
 cc ["\xc1", "-", "\xff"] bytes;

null ::=
 "\xc0";

Blink Specification

beta4 - 2013-06-14 Appendix C - Date Calculations 13 (13)

C Date Calculations

The following C fragment has two functions that outlines how
to convert to and from a Blink date value. The toDays function
converts a date expressed as a year, a month and a day of month,
into the number of days from the Blink date epoch 2000-01-01. The
toDate function converts in the other direction.

typedef long i64;
typedef int i32;

static const i32 EpochOffset = 730425;

i32 toDays (i32 y_, i32 mm, i32 dd)
{
 i64 m = (mm + 9) % 12;
 i64 y = y_ - m / 10;
 i32 days = 365*y + y/4 - y/100 + y/400 +
 (m*306 + 5)/10 + (dd - 1);
 return days - EpochOffset;
}

void toDate (i32 days_, i32* y_, i32* mm_, i32* dd_)
{
 i64 days = days_ + EpochOffset;
 i64 y = (10000*days + 14780) / 3652425;
 i64 ddd = days - (365*y + y/4 - y/100 + y/400);
 if (ddd < 0)
 {
 -- y;
 ddd = days - (365*y + y/4 - y/100 + y/400);
 }
 i64 mi = (100*ddd + 52) / 3060;
 i64 mm = (mi + 2) % 12 + 1;
 y = y + (mi + 2) / 12;
 i64 dd = ddd - (mi*306 + 5) / 10 + 1;
 *y_ = y; *mm_ = mm; *dd_ = dd;
}

NOTE: The arithmetics must take place in the 64-bit space,
hence the type definition for i64. In order to compile this
fragment on a 32-bit architecture you would probably have to
change the definition.

D Integer Encoding and Decoding Functions

The following C fragment has two functions that outlines how to
convert integer values to and from the VLC encoding used in
the Blink compact binary format. The functions encode_u64 and
decode_u64 translates a 64-bit integer to and from VLC.

typedef unsigned char u8;
typedef unsigned long u64;
typedef int i32;
typedef long i64;

i32 get_data_size (u64 data)
{
 u64 mask = (~0ULL) >> 8;
 int p1;

 for (p1 = 8 ; p1 > 1 ; -- p1, mask >>= 8)
 if (data > mask)
 break;

 return p1;
}

i32 encode_u64 (u8* buf, u64 data)
{
 if (data < 0x4000)

 {
 if (data < 0x80)
 {
 buf [0] = data;
 return 1;
 }

 buf [0] = 0x80 | (data & 0x3f);
 buf [1] = data >> 6;
 return 2;
 }
 else
 {
 i32 size = get_data_size (data);
 buf [0] = 0xc0 | size;

 i32 p1;
 for (p1 = 1 ; p1 <= size ; ++ p1)
 {
 buf [p1] = data & 0xff;
 data >>= 8;
 }
 return size + 1;
 }
}

i32 decode_u64 (u8* buf, u64* data)
{
 if (buf [0] < 0xc0)
 {
 if (buf [0] < 0x80)
 {
 *data = buf [0];
 return 1;
 }

 *data = (buf [0] & 0x3f) | (buf [1] << 6);
 return 2;
 }
 else
 {
 i32 size = buf [0] & 0x3f;
 u64 temp = 0;
 i32 p1;

 for (p1 = 0 ; p1 < size ; ++ p1)
 temp |= (u64) buf [p1 + 1] << (8 * p1);

 *data = temp;
 return size + 1;
 }
}

E References

EBNF http://www.w3.org/TR/2004/REC-xml-20040204/
#sec-notation

GREG http://en.wikipedia.org/wiki/
Proleptic_Gregorian_calendar

TWOC http://en.wikipedia.org/wiki/Two's_complement

UTF-8 http://tools.ietf.org/html/rfc3629

http://www.w3.org/TR/2004/REC-xml-20040204/#sec-notation
http://www.w3.org/TR/2004/REC-xml-20040204/#sec-notation
http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar
http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar
http://en.wikipedia.org/wiki/Two's_complement
http://tools.ietf.org/html/rfc3629

