
Blink Dynamic Schema Exchange Specification

beta4 - 2013-06-05 Contents 1 (4)

Blink Dynamic Schema Exchange
Specification

beta4 - 2013-06-05

This document specifies a method for encoding a Blink
schema into a sequence of binary Blink messages. It also
specifies a set of basic rules for exchanging encoded
schemas.

Copyright ©, Pantor Engineering AB, All rights reserved

Contents

1 Overview. 1

2 Basic Rules. 2

3 Reserved Type Identifiers. 2

4 Schema Translation. 2

Appendices

A Schema for Blink Schemas. 3

B References. 4

1 Overview

The Blink Encoding Specification [BLINK] defines the concept of
a Blink schema. It also defines a concrete syntax for representing
a schema in plain text. This specification defines an alternative
representation where a Blink schema is encoded as a sequence
of Blink messages. This representation is suitable for dynamic, in-
stream, exchange of schemas.

This specification does not mandate a single unique way of
exchanging encoded schema messages, but defines a basic set of
rules that can be applied in a number of scenarios.

Applications can range from fully static to fully dynamic. A schema
received in-stream can still be useful to a static implementation
to check for structural consistency. A semi-static implementation
can for example use the schema to discover new types that are
compatible through inheritance with its predefined types. Other
applications will be fully dynamic and will base the decoding fully
on the in-stream schema.

The following example shows a schema that defines a message
type Logon which is then encoded in the same stream as a
subsequent instance of that message.

This schema:

Logon/1 ->
 string User,
 string Password

and a message instance:

Logon: User: George Password: abracadabra

can be encododed in the same stream like this:

2b // Msg size: 43
81 fa // GroupDef type ID is 16001
00 // GroupDef.Annotations: NULL
00 // GroupDef.Name.Ns: NULL
05 4c 6f 67 6f 6e // GroupDef.Name.Name: "Logon"
01 // GroupDef.Id: 1
02 // GroupDef.Fields length: 2
00 // FieldDef [0].Annotations: NULL
04 55 73 65 72 // Name: "User"
00 // Id: NULL
04 // Type: Group size: 4
86 fa // String type ID: 16006
00 // String.Annotations: NULL
00 // String.MaxSize: NULL
00 // Optional: false
00 // FieldDef [1].Annotations: NULL
08 50 61 73 73 77 // Name: "Password"
6f 72 64 // ...
00 // Id: NULL
04 // Type: Group size: 4
86 fa // String type ID: 16006
00 // String.Annotations: NULL
00 // String.MaxSize: NULL
00 // Optional: false
00 // GroupDef.Super: NULL
14 // Msg size: 20
01 // Logon type ID is 1
06 47 65 6f 72 67 // Logon.User: "George"
65 // ...
0b 61 62 72 61 63 // Logon.Password: "abracadabra"
61 64 61 62 72 61 // ...

Blink Dynamic Schema Exchange Specification

beta4 - 2013-06-05 2. Basic Rules 2 (4)

2 Basic Rules

Before a decoder can decode a message it must know how to map
the encoded type identifier to the name of a group definition. It must
then determine how to get the actual definition that matches that
name.

These two steps can be fully or partially supported by the messages
defined here depending on the context:

• If the decoder already knows about a type definition
and its name, then it only needs to determine the
mapping from the type identifier. The message
Blink:GroupDecl can be used for this purpose. A
group declaration only specifies a type identifier and
a group name. It does not carry any information about
the structure of the group.

• If the decoder does not know anything about the
message type, it requires both the identifier mapping
and the actual structure. This specification defines the
Blink::GroupDef message that enables the required
information to be passed in the stream.

The sending application must make sure that a group declaration
or a group definition, depending on the context, is available to the
receiving application before it sees the corresponding message for
the first time.

If a reliable transport like TCP is used, then this means that
the relevant parts of the schema appears before the message
instance in the stream. If an unreliable transport is used, then the
possible scenarios are many and this specification does not define
a normative method in this case.

Type and group definitions of the schema can have
interdependencies. It is not required that the definitions are
transmitted in dependency order. As long as all prerequisites are
in place when needed to decode a particular application message
instance, the application can send the definitions in any order.

This specification does not require that the complete schema
is transmitted before the first application message. A sending
application may choose to do so for simplicity, but can also choose
to incrementaly interleve the stream of application messages
instances with schema messages as needed.

3 Reserved Type Identifiers

An application based on this specification must not use type
identifiers in the range 16000 - 16383 for other messages than
those defined here.

4 Schema Translation

The mapping from the schema syntax to messages in this
specification is straightforward based on the names of the
messages and their fields as defined here: Appendix A (page 3)
. This section details parts that need special consideration.

A namespace can be specified for a schema file in the schema
syntax. There is no direct counterpart to this declaration in the
schema messages, but all names must be fully qualified when
translated.

Given this schema:

namespace Eg
Msg

a group definition instance would look like this:

GroupDef:
 Name:
 Ns: Eg
 Name: Msg
 ...

The same holds for type references; they must be fully resolved
before being encoded in a schema message.

Names that are quoted by a backslash in the schema syntax should
not keep the backslash when translated:

\decimal -> i32 exp, i64 mant

translates to

GroupDef:
 Name:
 Name: decimal
 ...

Schema annotations are translated to SchemaAnnotation
messages. It is recommended that the Ns field of the translated
message is supplied with the namespace that was declared in the
schema where the annotation appears:

namespace Eg
schema <- @version="1.0"

translates to

SchemaAnnotation:
 Annotations: [Name: version Value: 1.0]
 Ns: Eg

Types in type definitions and in fields are translated to matching
dynamic subgroups. The constraints that are specified for the
schema syntax must still hold when translated to these groups. This
means that:

• a Sequence subgroup cannot have a Type field that
directly or indirectly resolves to another Sequence.

• an Enum subgroup can only appear in the Type field of
a Define message.

• the Type field of a DynRef subgroup must resolve to a
group definition.

• the Super field of a GroupDef message must resolve
to a group definition.

The symbols in an enumeration definition can have implicit values
in the schema syntax. In the correspoding Symbol subgroup this is
not supported and the value must always be explicitly specified.

Allthough an Enum component can hold a set of annotations since
it inherits from TypeDef, this set must always be empty. This is

Blink Dynamic Schema Exchange Specification

beta4 - 2013-06-05 4. Schema Translation 3 (4)

because annotations cannot be associated with the enumeration as
a whole in the schema syntax.

A Schema for Blink Schemas

namespace Blink

GroupDecl / 16000 : Annotated ->
 NsName Name, u64 Id

GroupDef / 16001 : Annotated ->
 NsName Name, u64 Id?, FieldDef [] Fields,
 NsName Super?

FieldDef : Annotated ->
 string Name, u32 Id?, TypeDef* Type, bool Optional

Define / 16002 : Annotated ->
 NsName Name, u32 Id?, TypeDef* Type

TypeDef : Annotated

Ref / 16003 : TypeDef ->
 NsName Type

DynRef / 16004 : TypeDef ->
 NsName Type

Sequence / 16005 : TypeDef ->
 TypeDef* Type

String / 16006 : TypeDef ->
 u32 MaxSize?

Binary / 16007 : TypeDef ->
 u32 MaxSize?

Fixed / 16008 : TypeDef ->
 u32 Size

Enum / 16009 : TypeDef ->
 Symbol [] Symbols

Symbol : Annotated ->
 string Name, i32 Value

U8 / 16010 : TypeDef
I8 / 16011 : TypeDef
U16 / 16012 : TypeDef
I16 / 16013 : TypeDef
U32 / 16014 : TypeDef
I32 / 16015 : TypeDef
U64 / 16016 : TypeDef
I64 / 16017 : TypeDef
F64 / 16018 : TypeDef
Bool / 16019 : TypeDef
Decimal / 16020 : TypeDef
NanoTime / 16021 : TypeDef
MilliTime / 16022 : TypeDef
Date / 16023 : TypeDef
TimeOfDayMilli / 16024 : TypeDef
TimeOfDayNano / 16025 : TypeDef
Object / 16026 : TypeDef

SchemaAnnotation / 16027 ->
 Annotation [] Annotations,
 string Ns?

Annotated ->
 Annotation [] Annotations?

Annotation ->
 NsName Name, string Value

NsName ->
 string Ns?, string Name

Blink Dynamic Schema Exchange Specification

beta4 - 2013-06-05 Appendix B - References 4 (4)

B References

BLINK http://blinkprotocol.org/spec/BlinkSpec-beta4.pdf

http://blinkprotocol.org/spec/BlinkSpec-beta4.pdf

