
Blink JSON Format Specification

beta4 - 2013-06-05 Contents    1 (3)

Blink JSON Format Specification
beta4 - 2013-06-05

This document specifies a method for encoding messages
structured by a Blink schema into the JSON format.

Copyright ©, Pantor Engineering AB, All rights reserved

Contents

1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Basic Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.1 Wrapper Array. . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Message. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.3 Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.4 Integer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.5 Decimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.6 Floating point. . . . . . . . . . . . . . . . . . . . . . . . 2
2.7 String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.8 Binary and Fixed. . . . . . . . . . . . . . . . . . . . . 2
2.9 Boolean. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.10 Time and Date. . . . . . . . . . . . . . . . . . . . . . . 2
2.11 Enumeration. . . . . . . . . . . . . . . . . . . . . . . . . 2
2.12 Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.13 Static Group. . . . . . . . . . . . . . . . . . . . . . . . . 3
2.14 Dynamic Group. . . . . . . . . . . . . . . . . . . . . . 3

3 Message Extensions. . . . . . . . . . . . . . . . . . . . . . . . 3

Appendices

A References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Overview

The core Blink specification [BLINK] defines a schema language for
specifying the structure of data messages. It also defines a binary
format for messages defined by such schema.

This specification provides a complementary format where
messages are encoded in JavaScript Object Notation [JSON].

In the JSON format:

• Messages and dynamic groups are mapped to JSON
objects. The object has a string property named $type
and the value is the name of the group.

• Within a group, each field is mapped to a property with
the same name as the field.

• Primitive data values are represented as numbers,
strings and Booleans.

• Subgroups are represented as JSON objects.

• Sequences are represented as JSON arrays.

The following shows what the first example in the core Blink
specification would look like in the JSON format:

Assuming the schema:

Hello -> string Greeting

a Hello message carrying the greeting "Hello World" would be
encoded as

{ "$type": "Hello", "Greeting": "Hello World" }

2 Basic Mapping

The following sections specifies how to represent Blink messages
in the JSON format.

2.1 Wrapper Array

A top-level stream of Blink messages is represented as a JSON
array:

[
  { "$type": "Hello", "Greeting": "Hello" },
  { "$type": "Hello", "Greeting": "Hello Again" }
]

2.2 Message

Top-level messages and internal dynamic groups are represented
as JSON objects. Each such object has a special string property
named $type that contains the name of the group. If the group is
defined in a schema with a namespace declaration, then the name
should be qualified by prefixing it with the namespace name and
a colon.

Assuming a schema:



Blink JSON Format Specification

beta4 - 2013-06-05 2. Basic Mapping    2 (3)

namespace Draw
Rect -> ...

then a Draw:Rect message would be represented as

{ "$type": "Draw:Rect", ... }

2.3 Field

Each field of a group is represented by a property with the same
name. The order of the field properties is not significant.

An optional field that has no value is simply left out.

Assuming a schema:

namespace Draw
Rect -> u32 Width, u32 Height, string Text?

then an instance could look like

{ "$type": "Draw:Rect", "Width": 10, "Height": 20 }

or, including the optional Text field:

{ "$type": "Draw:Rect", "Text": "Square", "Width": 17,
 "Height": 17 }

2.4 Integer

Integers with the bit widths 8, 16, and 32 are encoded unmodified as
JSON numbers. 64-bit integers are encoded as unmodified JSON

numbers if the absolute value is less than 1015. Otherwise, the value
is encoded as a string containing the number in decimal notation.
This is to prevent information loss due to the limited precision of
JSON numbers.

2.5 Decimal

A decimal value where the absolute value of the mantissa is less

than 1015 is encoded as a JSON number in decimal or scientific
notation. Otherwise, the value is encoded as a string containing the
decimal or scientific representation of the number. This is to prevent
information loss due to the limited precision of JSON numbers.

2.6 Floating point

An f64 value is represented as a JSON number in decimal or
scientific notation. The values positive and negative infinity and not-
a-number are mapped to the strings "Inf", "-Inf" and "NaN"
respectively.

2.7 String

String values are encoded as JSON strings. If a string type has
a max size property, then the string must not be longer that the
specified value when represented as a [UTF-8] byte sequence.

2.8 Binary and Fixed

If a binary or fixed value is a valid UTF-8 sequence, then it can
be encoded as a JSON string, otherwise it must be encoded as
a hexadecimal list. A hex list is a JSON array of strings. Each
string comprises hex digits and possibly spaces. The corresponding
byte sequence value is obtained by concatenating all the strings,
removing any spaces and finally translating each pair of hex digits
into a byte. It is an error if the number of hex digits is not a multiple
of two.

If a binary type has a max size property, then the byte sequence
that results from a hex list must not be longer that the specified
value. For a fixed type, the byte sequence must be exactly as long
as specified in the size property.

Assuming a schema:

inetAddr = fixed (4)
Packet -> inetAddr Host, ...

then a host address can be represented like this:

{ ... "Host":["3e 6d 3c ea"] ... }

2.9 Boolean

A Boolean value is mapped to a JSON Boolean.

Assuming a schema:

Flags ->
  bool Trace, bool Warn

then a message could look like this:

{ "$type": "Flags", "Trace": false, "Warn": true }

2.10 Time and Date

Values of the time and timestamp types millitime, nanotime,
date, timeOfDayMilli and timeOfDayNano are represented as
strings. The format of these strings is the same as specified for
these types in the Blink Tag Specification [TAG].

2.11 Enumeration

An enumeration value is represented by the corresponding symbol
name from the schema:

Color = Red | Green | Blue
Car  -> Color Color

Assuming the schema above, the color of a car would be
represented like this:

{ "$type": "Car", "Color": "Blue" }



Blink JSON Format Specification

beta4 - 2013-06-05 2. Basic Mapping    3 (3)

2.12 Sequence

A sequence is represented as a JSON array.

Assuming a schema:

Sample -> u32 Values []

then a message could look like this:

{ "$type": "Sample", "Values": [1, 2, 3] }

2.13 Static Group

A static group value is represented by a JSON object.

Assuming a schema:

Point -> u32 X, u32 Y
Line  -> Point From, Point To
Path  -> Point Points []

then a message could look like this:

{
  "$type": "Line", 
  From: { "X": 0, "Y": 0 },
  To: { "X": 10, "Y": 10 }
}

A sequence of static groups would look like this:

{ 
  "$type": "Path", 
  "Points": [
    { "X": 0, "Y": 0 }, 
    { "X": 10, "Y": 10 }, 
    { "X": 17, "Y": 10 }
  ]
}

2.14 Dynamic Group

A dynamic group is represented in the same way as a top level
message: by a JSON object with the special $type string property
indicating the dynamic type of the object.

Assuming a schema:

Shape
Rect   : Shape -> u32 Width, u32 Height
Circle : Shape -> u32 Radius
Frame  : Shape -> Shape* Content
Canvas -> Shape* [] Shapes

then a Frame is represented like this:

{
  "$type": "Frame", 
  "Content": { 
    "$type": "Rect", 
    "Width": 10, 

    "Height": 20 
  }
}

A sequence of dynamic groups would be represented like this:

{
  "$type": "Canvas",
  "Shapes": [
    { "$type": "Rect", "Width": 10, "Height": 20 }
    { "$type": "Circle", "Radius": 10 }
  ]
}

3 Message Extensions

Extension content of messages or internal dynamic groups is
represented as the special property $extension. The value of the
property is an array of dynamic group objects corresponding to the
extension content.

Assuming a schema:

Mail  -> string Subject, string Body
      Trace -> string Hop

and an extended message:

@Mail|Subject=Hello|Body=How are you?|
      [@Trace|Hop=local.eg.org;@Trace|Hop=mail.eg.org]

then it would be represented like this in JSON:

{
  "$type": "Mail",
  "Subject": "Hello",
  "Body": "How are you?",
  "$extension": [
    { "$type": "Trace", "Hop": "local.eg.org" },
    { "$type": "Trace", "Hop": "mail.eg.org" }
  ]
}

A References

BLINK http://blinkprotocol.org/spec/BlinkSpec-beta4.pdf

JSON http://json.org/

TAG http://blinkprotocol.org/spec/BlinkTagSpec-
beta4.pdf

UTF-8 http://tools.ietf.org/html/rfc3629

http://blinkprotocol.org/spec/BlinkSpec-beta4.pdf
http://json.org/
http://blinkprotocol.org/spec/BlinkTagSpec-beta4.pdf
http://blinkprotocol.org/spec/BlinkTagSpec-beta4.pdf
http://tools.ietf.org/html/rfc3629

